Agenda

– Current Trends and Challenges
– Automation in design development
– Data Management is more important than ever before.

Visit us at www.ddsplm.com
Greater Innovation Pressure on Suppliers

Global fuel economy & emission regulations drive technology change

<table>
<thead>
<tr>
<th>Eco-driven Powertrain Concepts</th>
<th>Innovative and Lightweight Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Plug-in Hybrids</td>
<td>• Vehicle Performance</td>
</tr>
<tr>
<td>• Electric Vehicles</td>
<td>• Powertrain Optimization</td>
</tr>
<tr>
<td>• Combustion</td>
<td>• Load Reduction</td>
</tr>
<tr>
<td>• Powertrain efficiency</td>
<td>• Cost Trade-offs</td>
</tr>
<tr>
<td>• Transmissions & Drives</td>
<td>• Mechanical / Software Integration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Creating Brand Value Through Performance</th>
<th>System Optimization, Electronics Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aerodynamics</td>
<td>• Vehicle Performance</td>
</tr>
<tr>
<td>• Driving Behavior</td>
<td>• Powertrain Optimization</td>
</tr>
<tr>
<td>• Rolling Resistance</td>
<td>• Load Reduction</td>
</tr>
<tr>
<td>• Energy Management</td>
<td>• Cost Trade-offs</td>
</tr>
<tr>
<td>• Climate Systems</td>
<td>• Mechanical / Software Integration</td>
</tr>
</tbody>
</table>

Visit us at www.ddsplm.com
Greater Innovation Pressure on Suppliers

Rate of technology adoption drives increasing cost pressure and risk

- Rapidly increasing product and process complexity
- More NPD and variants per year
- New Products and materials
- Less development time
- Increasing quality requirements.
- Pressure on product and development cost
- Suppliers need to build to specification

Eco-driven Powertrain Concepts
- Plug-in Hybrids
- Electric Vehicles
- Combustion
- Powertrain efficiency
- Transmissions & Drives

Innovative and Lightweight Design
- Vehicle Architecture
- Weight Efficiency
- Attribute Tradeoff
- Joining technology
- Materials

Creating Brand Value Through Performance
- Aerodynamics
- Driving Behavior
- Rolling Resistance
- Energy Management
- Climate Systems

System Optimization, Electronics Control
- Vehicle Performance
- Powertrain Optimization
- Load Reduction
- Cost Trade-offs
- Mechanical / Software Integration

Visit us at www.ddsplm.com
Solutions for Industry

Visit us at www.ddsplm.com
<table>
<thead>
<tr>
<th>NPD Process Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible engineering tools that improve design efficiency and adhere to standards</td>
</tr>
<tr>
<td>Concurrent Engineering</td>
</tr>
<tr>
<td>Early participation in NPD for all stakeholders.</td>
</tr>
<tr>
<td>Maximize data re-use</td>
</tr>
<tr>
<td>Single Source of data and best tool for the job without converting data</td>
</tr>
</tbody>
</table>

Visit us at www.ddsplm.com
Intelligently Integrated Information boosts productivity
“The difference lies in the way the functionality is made available. And in this respect NX scores high, as our people use it with pleasure.”

Lau Reijnen
General Manager
DuvedeC Europe BV

- Single tool offering comprehensive CAD CAM CAE Capability in a single environment delivers maximum productivity
- Parametric feature based modeling
- Synchronous Technology
- Freeform modeling
- Design for Manufacturability analysis
- Simulation for digital validation
- PDC Mold Design
- Simple to complex CNC machine programming

Visit us at www.ddsplm.com
• Synchronous technology enables

 – Simple, direct pull/push tools for editing and creation

 – Modify a part – even if you don’t know how it was created

 – Select and drag with real time preview

 – Immediate feedback on design changes

 – Add intelligence to dumb data
Synchronous Technology

- No need to understand model history, and feature Relationships-depencies in order to make a change
- Modification and constraints are applied directly to model geometry (faces, edges) increasing flexibility
- Efficient response to model changes
- Easy to modify imported models when needed
- Fully integrated with parametric feature based workflow
- Solves complex core design issues like draft and blends

Visit us at www.ddsplm.com
Tool Design specialized tools for different applications

Mold Design
- Plastics
- Rubber
- Casting

Stamping Tool Design
- Draw
- Trim
- Restrike

Progressive Die Design
- Strip layout
- Simulation
- Standard Die base

Visit us at www.ddsplm.com
• Step-by-step process for mold design
• Structured workflow based on expert best practices
• Automation of mold-specific tasks
• Mold component libraries
• Dramatically more productive than traditional CAD
• Promotes the most efficient workflow
Embedded Process Expertise for Mold Design

Product Analysis
- Wall thickness
- Radius / Sharp Corner
- Draft Analysis
- Shrinkage

Core / Cavity
- Layout
- Region definition
- Shut-off
- Parting
- Core / Cavity Split
- Slides / Lifters

Mold Structure
- Mold base
- Ejector pins
- Cooling
- Gates
- Runners
- Standard parts

Validation
- Parting Check
- Interference / Clearance
- Compare Swap Map

Detailing
- Pocketing
- BOM
- Drawings
Automated Mold Base Design Demonstration
Importance of checking designs for manufacturability

Business Challenges

Automotive recalls (18 million in US in 2012)
Example: mounting holes in the seat belt anchor plates fitted to the vehicle are too small. ...the anchor plate may not be able to rotate about the fastening bolt as designed...seat belt may not be routed optimally...or may potentially loosen...increasing the risk of injury during a crash.
Source: National Highway Traffic Safety Commission

Consumer recalls
Example: Children’s toy (sold at exclusive store) recalled due to sharp edges...the largest plastic castle block could crack during use, creating sharp edges that can pose a laceration hazard to young children.
Source: cpsc.gov

Engineering Challenges

Meeting Project Schedule
- Higher delays due to rework
- Lower productivity

Quality Management
- Quality problems due to inexperienced engineers
- Downstream quality issues
- Regulatory demands

Controlling Production Costs
- Excess scrap generation
- Expensive tooling
- Cost overruns

Improving Innovation
- More time spent on reviews and rework activity
DFMPro for NX

– Get your designs right first time

DFMPro for NX

• Enables upstream manufacturability validation, identifying design areas that are difficult, expensive or impossible to manufacture

• Automates and formalizes the design review process for manufacturability

• Provides a mechanism for best practice knowledge capture and reuse for continuous improvement

• Reduces rework cost

DFMPro for NX not only highlights the problem but suggests corrective action and values from best practice handbooks and knowledge repository
DFMPro for NX runs inside NX

- Uses the existing, familiar and proven Check-Mate framework
- HD3D interface for problem navigation and tagging
- DFM Checks provided out-of-the-box for machining, sheet metal, injection molding, assembly and casting manufacturing processes
- Utilizes Check-Mate results tools and Teamcenter integration

DFMPro for NX is seamlessly part of NX, running inside Check-Mate, reducing the learning curve for existing Check-Mate users
molding checks include:

• Sudden wall thickness variation
• Tall/thick/thin ribs
• Boss height, thickness and radius
• Thin or undercut regions

Sheet metal checks include:

• Slot parameters
• Hole parameters
• Multiple bends, bend parameters and cutouts
• Hem parameters
Product and Tool Costing

- **Product Costing**
 - Automated tools to analyze product and machining features.
 - Attribute material, man, machine, consumable cost based on your standards.
 - Variable cost depending on volumes, plants etc.

- **Tool Costing**
 - Manufacturing feasibility
 - Identify product features and decide tool configuration, slides etc.
 - Derive machining cost
 - Material cost
 - Standard parts etc

Visit us at www.ddsplm.com
Current Capability
- Broad capabilities in one system
 - 2½D machining for die structure
 - 3D machining for die face
- Associative links to design
- Rich automation capabilities
- Rich modeling capabilities available for NC prep work
- Highly realistic simulation

Customer Value
- One system – no data transfers
- Associativity reduces rework effort
- Automation reduces work, improves standardization and process stability
Current Capability

- Roughing -- cavity & pocket milling
- Finishing -- planar, face, plunge milling
- Drilling (manual or feature-based) holes
- Automation based on machining knowledge database, features, attributes, PMI
- General Features
 - In-Process Workpiece (IPW)
 - Tool path Editor
 - Toolpath verification

Customer Value

- Automation reduces work, improves standardization and process stability
Mold and Die Machining

- A complete CAM solution for tool surfaces and structures
 - Automation with feature-based machining (FBM)
 - High speed machining for hard tool steels
 - Advanced 5 axis programming and simulation

- Integrated machine tool simulation
 - Based on NC Output with fully Collision check parallel during Programming

- Resource library for tool and machining data
• A new approach to CMM inspection programming
 • Based on PMI and data point on 3D models
 • Pre-defined inspection process

• Output file to CMM inspection machines
 • Uses standard DMIS format

• Inspection data read back into NX for checking

• Faster to make changes – design to inspection
 • Uses same NX model used for tool design and CAM

Visit us at www.ddsplm.com
Process solution for tooling industry

- **Moldex** - Plastic and Rubber molding simulation

- **Dynaform** - Sheetmetal Stamping Simulation

- **Qform** - Metal forming simulation, Forging, Extrusion, Rolling

Visit us at www.ddsplm.com
<table>
<thead>
<tr>
<th>Your Goals</th>
<th>Critical Success Factors</th>
<th>Strategic Initiatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerate NPI</td>
<td>▪ Single Source of Information</td>
<td>• CAD Management</td>
</tr>
<tr>
<td></td>
<td>▪ Product & Process Traceability</td>
<td>• APQP Program Management</td>
</tr>
<tr>
<td></td>
<td>▪ Change Implementation</td>
<td>• Engineering Change Management</td>
</tr>
<tr>
<td>Continuous Improvement</td>
<td>▪ Design / Knowledge Re-use</td>
<td>• Standardization</td>
</tr>
<tr>
<td></td>
<td>▪ First time right</td>
<td>• Manufacturing Validation</td>
</tr>
<tr>
<td></td>
<td>▪ Reduce Scrap / Rework</td>
<td>• Closed Loop Quality</td>
</tr>
</tbody>
</table>
Engineering Data

- CAD Files
- Drawings
- Simulation
- Vis File
- Contract
- Specs
- Calculations
- Test Reports
- RFx
- Proposals
- Risks
- Costs/ROI
- Certification
- CR ####
- CN ####
- Markup
- Cost
- Reports
Engineering Collaboration

- CAD Data Management
- Early view to all stakeholders.
- Zero data redundancy.
- APQP Program Management
- Engineering Change Management
- Safekeeping of valuable records.
THANK YOU

Manish Garg
manish@ddsplm.com
9810121890