

Agenda

- Current Trends and Challenges
- Automation in design development
- Data Management is more important than ever before.

Greater Innovation Pressure on Suppliers

Global fuel economy & emission regulations drive technology change

Eco-driven Powertrain Concepts

- Plug-in Hybrids
- **Electric Vehicles**
- Combustion
 - Powertrain efficiency
 - Transmissions & Drives

Creating Brand Value Through Performance

- Aerodynamics
- **Driving Behavior**
- **Rolling Resistance**
- **Energy Management**
- Climate Systems

Innovative and Lightweight Design

System Optimization, Electronics Control

Vehicle Performance
Powertrain Optimization
Load Reduction
Cost Trade-offs
Mechanical / Software Integration

Greater Innovation Pressure on Suppliers

- Powertrain Optimization
 - Load Reduction Cost Trade-offs

Integration

Mechanical / Software

Rate of technology adoption drives increasing cost pressure and risk

- Rapidly increasing product and process complexity
- More NPD and variants per year
- New Products and materials
- Less development time
- Increasing quality requirements.
- Pressure on product and development cost
- Suppliers need to build to specification

Solutions for Industry

SOLUTIONS

NPD Process Automation

Flexible engineering tools that improve design efficiency and adhere to standards

Concurrent Engineering

Early participation in NPD for all stakeholders.

Maximize data re-use

Single Source of data and best tool for the job without converting data

Visit us at www.ddsplm.com

Intelligently Integrated Information boosts productivity

NX – CAD CAM CAE

- Single tool offering comprehensive CAD CAM CAE Capability in a single environment delivers maximum productivity
- Parametric feature based modeling
- Synchronous Technology
- Freeform modeling
- Design for Manufacturability analysis
- Simulation for digital validation
- PDC Mold Design
- Simple to complex CNC machine programming

"The difference lies in the way the functionality is made available. And in this respect NX scores high, as our people use it with pleasure."

Lau Reijnen General Manager DuvedeC Europe BV

Synchronous Technology Productive Design That is Easy To Use

- Synchronous technology enables
 - Simple, direct pull/push tools for editing and creation
 - Modify a part even if you don't know how it was created
 - Select and drag with real time preview
 - Immediate feedback on design changes
 - Add intelligence to dumb data

Synchronous Technology

- No need to understand model history, and feature Relationshipsdependencies in order to make a change
- Modification and constraints are applied directly to model geometry (faces, edges) increasing flexibility
- Efficient response to model changes
- Easy to modify imported models when needed
- Fully integrated with parametric feature based workflow
- Solves complex core design issues like draft and blends

Tool Design specialized tools for different applications

Mold Design

- Plastics
- Rubber
- Casting

Stamping Tool Design

- Draw
- Trim
- Restrike

Progressive Die Design

- Strip layout
- Simulation
- Standard Die base

NX Mold Wizard

- Step-by-step process for mold design
- Structured workflow based on expert best practices
- Automation of mold-specific tasks
- Mold component libraries
- Dramatically more productive than traditional CAD
- Promotes the most efficient workflow

Embedded Process Expertise for Mold Design

DIGITAL DESIGN SOLUTIONS Technology for success

DFM -Industry Challenges

Importance of checking designs for manufacturability

Business Challenges	Engineering Challenges	
Automotive recalls (18 million in US in 2012) Example: <u>mounting holes in the seat belt anchor plates</u> <u>fitted to the vehicle are too small.</u> the anchor plate may not be able to rotate about the fastening bolt as	Meeting Project Schedule	 Higher delays due to rework Lower productivity
designed <u>seat belt may not be routed optimallyor may</u> potentially loosenincreasing the risk of injury during a <u>crash.</u> Source: National Highway Traffic Safety Commission	Quality Management	 Quality problems due to inexperienced engineers Downstream quality issues Regulatory demands
Consumer recalls Example: <u>Children's toy (sold at exclusive store) recalled</u> <u>due to sharp edges</u> the largest plastic castle block could crack during use, <u>creating sharp edges that can pose a</u> <u>laceration hazard to young children.</u> Source: cpsc.gov	Controlling Production Costs	 Excess scrap generation Expensive tooling Cost overruns
	Improving Innovation	More time spent on reviews and rework activity

DFMPro for NX – Get your designs right first time

DFMPro for NX

- Enables upstream manufacturability validation, identifying design areas that are difficult, expensive or impossible to manufacture
- Automates and formalizes the design review process for manufacturability
- Provides a mechanism for best practice knowledge capture and reuse for continuous improvement
- Reduces rework cost

DFMPro for NX not only highlights the problem but suggests corrective action and values from best practice handbooks and knowledge repository

DFMPro for NX – Seamlessly integrated inside NX

DFMPro for NX runs inside NX

- Uses the existing, familiar and proven Check-Mate framework
- HD3D interface for problem navigation and tagging
- DFM Checks provided out-of-the-box for machining, sheet metal, injection molding, assembly and casting manufacturing processes
- Utilizes Check-Mate results tools and Teamcenter integration

DFMPro for NX is seamlessly part of NX, running inside Check-Mate, reducing the learning curve for existing Check-Mate users

DFMPro for NX – Examples of OOTB Checks

molding checks include:

- Sudden wall thickness variation
- Tall/thick/thin ribs
- Boss height, thickness and radius
- Thin or undercut regions

Sheet metal checks include:

- Slot parameters
- Hole parameters
- Multiple bends, bend parameters and cutouts
- Hem parameters

Product and Tool Costing

- Product Costing
- Automated tools to analyze product and machining features.
- Attribute material, man, machine, consumable cost based on your standards.
- Variable cost depending on volumes, plants etc.

- Tool Costing
- Manufacturing feasibility
- Identify product features and decide tool configuration, slides etc.
- Derive machining cost
- Material cost
- Standard parts etc

NX Advanced Simulation

Visit us at www.ddsplm.com

General NX CAM Capabilities

Current Capability

- Broad capabilities in one system
 - 2½D machining for die structure
 - 3D machining for die face
- Associative links to design
- Rich automation capabilities
- Rich modeling capabilities available for NC prep work
- Highly realistic simulation

Customer Value

- One system no data transfers
- Associativity reduces rework effort
- Automation reduces work, improves standardization and process stability

Milling and Drilling

Current Capability

- Roughing -- cavity & pocket milling
- Finishing -- planar, face, plunge milling
- Drilling (manual or feature-based) holes
- Automation based on machining knowledge database, features, attributes, PMI
- General Features
 - In-Process Workpiece (IPW)
 - Tool path Editor
 - Toolpath verification

Customer Value

 Automation reduces work, improves standardization and process stability

Mold and Die Machining

- A complete CAM solution for tool surfaces and structures
 - Automation with feature-based machining (FBM)
 - High speed machining for hard tool steels
 - Advanced 5 axis programming and simulation
- Integrated machine tool simulation
 - Based on NC Output with fully Collision check parallel during Programing
- Resource library for tool and machining data

NX CMM Inspection Programming

- A new approach to CMM inspection programming
 - Based on PMI and data point on 3D models
 - Pre-defined inspection process
- Output file to CMM inspection machines
 - Uses standard DMIS format
- Inspection data read back into NX for checking
- Faster to make changes design to inspection
 - Uses same NX model used for tool design and CAM

Process solution for tooling industry

Metal Flow simulation software for casting industry.

Moldex - Plastic and Rubber molding simulation

Dynaform- Sheetmetal Stamping Simulation

Qform- Metal forming simulation, Forging, Extrusion, Rolling

dis	Charting Your Success	
DIGITAL DESIGN SOLUTIONS Technology for success	PDM is important	
Your Goals	Critical Success Factors	Strategic Initiatives
Accelerate NPI	 Single Source of 	CAD Management
	Information	APQP Program
	 Product & Process 	Management
	Traceability	Engineering Change
	 Change Implementation 	Management
Continuous Design / Knowled		Standardization
Improvement	 Design / Knowledge Re-use 	
	 First time right 	Manufacturing Validation
	 Reduce Scrap / Rework 	Closed Loop Quality

Engineering Data

Single Source of Information

DIGITAL DESIGN SOLUTIONS

Engineering Collaboration

- CAD Data Management
- Early view to all stakeholders.
- Zero data redundancy.
- APQP Program Management
- Engineering Change Management
- Safekeeping of valuable records.

THANK YOU

Manish Garg manish@ddsplm.com 9810121890