Doping and growth of carbon nano-structures -a next generation material

By Malay Jana

Under the supervision of Prof. Subrata Ray & Prof. Anjan Sil

Department of Metallurgical & Materials Engineering Indian Institute of Technology Roorkee

Outline

- > History
- > Some motivating properties
- > Applications
- Some results with discussion
- > Conclusions

History of carbon nano-structures

□ In **1970s, Morinobu Endo** prepared the first carbon filament of nanometer dimensions

Richard E. Smalley (Nobel Prize winning in 1996) discovered the buckyball (C60) and other fullerenes (1985)

□ In **1991, Sumio Iijima** had been using TEM to analyze new type of finite carbon structure, that is composed of **needle-like tubes**

Why do Carbon Nanotubes form?

MMMM-2011

Iijima S., Nature 354, 56 (1991); Smalley R. E. et al., Science 273, 483 (1996)

The chirality, or "twist" of the nanotube

The electronic properties of nanotubes are directly dependent on the chiral vector

	Young's modulus	SWCNT 1054 GPa MWCNT 1200 GPa
	Tensile strength	SWCNT ~60 GPa
Damascas blades famous for their remarkable strength and sharpness		MWCNT ~150 GPa
	Current density	10 ⁹ A/cm ²
CNTs inside damascas blade 🔶	Electric conductivity	1.5 kW-cm
Nature, 2006	Thermal conductivity	2000 W/m.K

Popov Valentin N., Mater Sc and Engg. R. 43, 61 (2004)

Common applications Suggesting a new generation high strength & light weight material for current & future green technologies

- Structural composites (Boeing 787, steel, buildings, etc)
- Energy storage
- Molecular (Nano) electronics & devices
- Conductive plastics
- Conductive adhesives & Connectors
- Thermal materials (conduct or insulate)
- Catalytic & biomedical supports
- Others

MMMM-2011

Preparation of nano-sized metal oxide catalyst particles:

Aqueous saturated solution of mixtures of each of the metal salts with varied Cu % (0.5-20)

+ Chelating agent of Citric acid monohydrate

Slow stirring & heating simultaneously at 65 -84 C to form a gel to get desired average particle size

Details of doping and size distribution of oxide catalyst particles:

			Mean Size (nm)	
Sample Designation	Sample Designation Doping level of Cu (wt %) Size distribution (nm)		Zetasizer	Image-J
Со	0	167-691	583.4	581
CoCu1	1	88-424	327.3	350
CoCu10	10	71-391	251.0	225
CoCu20	20	137-663	531.9	500
NiCu10	10	39-84	71.51	60
NiCu15	15	45-165	91.28	97
NiCu20	20	70-173	141.8	130
FeCu0.5	0.5	233-444	339.7	329
FeCu1	1	296-516	387.7	362

13-02-2011

MMMM-2011

Typical FESEM micrographs of some of calcined oxide catalysts

13-02-2011

MMMM-2011

MMMM-2011

DTA curves for different composition and different particle size of some doped Co oxide catalyst

Beginning of a broad endothermic peak, within a sharp endothermic peak is embedded

Different slope
Different starting melting point

- Similar slope
- Different starting melting point

DTA curves for different composition and different particle size of some doped Ni oxide catalyst

DTA curves for different composition of some doped Fe based oxide catalyst

Shows a broad endothermic peak with a bigger size of particles - slope change is narrow compared to others

The effect of doping and size of the catalyst on the start of melting as indicated by DTA result:

Sample designation	Mean Size (nm)	Smallest Size (nm)	Start of melting phenomena (°C) from DTA
Со	40	19	516
CoCu1	350	88	541
CoCu10	225	71	500
CoCu20	500	137	455
NiCu10	60	39	546
NiCu15	97	45	538
NiCu20	130	70	507
FeCu0.5	329	233	>640
FeCu1	362	296	>640

Variation of start of melting with increase level of doping for Co and Ni based oxide catalysts

Observed nanostructures with different size and doping level of catalysts:

Catalyst	Particle size range (nm)	Observed nano-structures	Diameter distribution of the CNS (nm)
Со	19-59	Tube & nano-spheres	55-339
CoCu1	88-424	Tube & nano-spheres	134-256
CoCu10	71-391	Fiber –straight/helical & nano-spheres	131-147
CoCu20	137-663	Tape, Fiber & nano-spheres	210-590
NiCu10	39-84	Tube, Fiber-straight/helical & nano-spheres	8-248
NiCu15	45-165	Tube, Fiber & nano-spheres	49-211
NiCu20	70-173	Fiber & nano-spheres	54-165
FeCu0.5	233-444	Chains of nano-spheres	141-200
FeCu1	296-516	Chains of nano-spheres	74-131

13-02-2011

MMMM-2011

Observed carbon nanostructures grown over Co oxide based catalyst

Observed carbon nanostructures grown over Ni oxide based catalyst

13-02-2011

MMMM-2011

Observed nanostructures (Nano-spheres) grown over Fe oxide based catalyst

Dependence of diameter of the CNS with size of the doped catalysts inside CNS

Raman spectrum of the CNS formed by different copper doped catalysts

The peaks appearing at ~1590 and ~1345 cm⁻¹ are attributed to G and D-bands respectively. 13-02-2011 MMMM-2011

Conclusions:

- Formation of different type of carbon nano-structures (multi-walled) through a distinctly different mechanism involving surface melting of the catalyst.
- Doping provide an important tool for getting the desired type of CNS by
 Surface melting and the thickness of the molten layer &
 - ≻ Changes in the shape & size of the catalyst.

So for commercialization it needs industry to come for bulk production-Which in turns is very much in need for use in any structural applications.

Acknowledgements:

My supervisors:

Prof. S. Ray & Prof. A. Sil.

DST, Govt. of India for financial support under Indo-Australian research program.

Thank You!!