Novel Approach for economic production of Low Alloy & Stainless Steel by utilising over- burden of Sukinda Nickeliferrous ore

by

K.K.Mehrotra

Adviser, State Bank of India Independent Director, Visa Steel & Visa Sun Coke IEM, Security, Printing & Minting Corporation of India Chairman, MMDB, Institution of Engineers India Former CMD, MECON Limited

- Reserves of Nikeliferrous laterite deposits in India are in Sukinda valley & Samlipal area of Orissa
- Sporadic reseves are also reported from Singhbhum district of Jharkhand & Tuensang district of Nagaland
- 98% of laterite reserves are confined in Sukinda valley spread over a 200 sq km.
- Total gross reserves : 231.4 Mt of nickel ore containing 0.2 to 1.2 % Ni
- Large resources of nickel in overburden of chromite mines which varies from 0.5% to 1% nickel.
- Chromite ore reserves in Sukinda area : 50 Mt

- Presently 1.0 Mt chromite ore mined annually by TISCO & OMC
- For every tonne of chromite ore mined, 10 tonne of nickeliferrous limonites along with lateritic overburden is extracted
- ► About 75 % of overburden is accounted for nickeliferous limonites
- 10 Mt of nickeliferrous overburden is generated annually by TISCO & OMC & 140 Mt has been accumulated over several years of mining
- This overburden average 0.7 % nickel of which 40-50% of material average 1% nickel if dumped through grade control
- On account of mechanised mining & lack of market demand of such overburden, chromite ore producers are not segragating richer nickeliferous limonites

Process for production of Ferro –Nickel

- Rotary Kiln Submerged Arc Furnace (RK SAF)
- Shaft Furnace Submerged Arc Furnace (SF-SAF)
- Ugine Process
- Oheyama Process
- Blast Furnace Process
- With high capital cost coupled with small requirement & with not so attractive international price of Fe- Ni, over burden of Sukinda was not considered economical viable for Fe-Ni / Nickel production.
- Due to high Fe content of Sukinda ore, large quantity of Fe is to be converted into oxide slag to get Fe-Ni of desired Ni content.

- In order to take advantage of presence of high iron content, this novel approach has been tried for commercial trial.
- Nickeliferous laterite ore / chromite over burden will be utilised for hot metal production through blast furnace extracting maximum iron, nickel and chromium from ore.
- Hot metal containing nickel & chromium can be further refined for production of low alloy / stainless steel having nickel & chromium thus saving for ferro - alloy consumption resulting in lower cost of production of alloy steel.

Diverse Application of Ni- Cr Steel

- ► Ni Cr low alloy steel have diverse application in commercial use
- Chromium , a strong carbide former, is an important hardening element in steel & possess corrosion resistance property.
- Nickel , a ferrite strenghter, is a toughening element & also lower critical cooling rate for hardening
- These two elements together render steel quite effective engineering material having good hardenability, impact strength, resistance to corrosion & fatigue resistance.
- Cr Ni low alloy find vide application as axle shafts, bearing, barrels, other machinery components, stiffeners & other structural members of industry like aerospace, defence, automobile, engineering / construction industries etc.

Large variety of stainless steel containing high percentage of chromium & nickel finds its use in various industrial / household applications.

Commercial application of stainless steel usage are :

- Chemical& pharmaceutical machineries
- Dairy equipment / machineries
- Textile machineries
- Paper & pulp machineries
- Hospital & surgical instrument
- Transport sector
- Nuclear industries
- Utensil & cutlery
- Manufacturing industry
- Construction sector
- Transport sector : Railway coaches, bus body etc

Production of Low Alloy & Stainless Steel

Conventional Method

- Refining of hot metal in BOF & addition of ferro alloys in Ladle Furnace for low alloy steel
- For Stainless Steel- preferred to have required chromium in initial charge to minimise cost of input material by adding chromium bearing scrap & or charge - chrome/ high carbon ferro- chrome.
- To avoid excessive chromium loss, one of following additional step is required after initial melting
 - Vacuum Oxygen Decarburisation (VOD)
 - Argon Oxygen Decarburisation (AOD)
 - Creuset Loire & Uddeholm Process (CLU)
 - Metal Refining Process (MRP)
 - Argon Secondary Metallurgy (ASM)

Case Study

- Base Case Conventional Method for production of Low Alloy steel & Stainless Steel
- Case I : Production of low alloy Ni-Cr-Mo steel (En 24 & 25)
- Case II : Production of AISI 302 stainless Steel
- Broad economics has been carried out for comparison for production of 170, 000 t /yr cast bloom production

Major plant facilities for cases under consideration

Facilities	Base	Case I	Case II
Sinter Plant		1x50 m2	1x50 m2
Blast Furnace	1x 350 m3	1x350 m3	1x350 m3
BOF Converter	1x30 t	1x 30 t	
CLU			1x30 t
VOD Unit	1 no. *		
Bloom caster	1x1 strand	1x1 strand	1x1 strand
Services& Aux.	Same	Same	Same

* For production of Stainless Steel

Technological Parameters

Parameters	Base Case	Case I	Case II
Ore Analysis, %			
- Fe	62.0	51.0	51.0
- SiO2	1.2	5.8	5.8
- Al2O3	1.6	4.0	4.0
- Ni	-	1.1	1.1
- Cr	-	2.3	2.3
- Source	Daitari	Sukinda	Sukinda
BF burden			
- % Sinter	Nil	85 /100	100
- % Lump Ore	100	15 /0	0
- Coke , kg/thm	655	620	620

Technological Parameters

Parameters	Base Case	Case I	Case II
Hot Metal Analysis			
- C	3.6	3.6	3.6
- Si	0.8	0.8	0.8
- Mn	0.6	0.6	0.6
- Ni	-	1.7 / 2.1	2.1
- Cr	-	2.4 / 2.8	2.8
- P	0.2	0.2	0.2
BOF			
Metallic input, kg/ tls	1090	1090	905
Oxygen , Nm3/tls	52	55	82
Lime , kg/ tls	55	55	200

Industrial Trial

- Industrial trial for production of Ni-Cr bearing pig iron was conducted in blast furnace of Kalinga Iron Works Limited , Barbil using 25% to 50% chromite overburden sinter in the burden.
- During three days trial 250 tonnes of alloyed pig iron having Ni in the range of 0.39- 0.9% has been produced successfully first time in the country using the over burden waste from chromite mines

Capital cost Index,%

Index of capital investment

Break up of production cost,%

Base Case: Production of low alloy steel

Break up of production cost,%

Case I : Production of Low Alloy Steel

Break up of production cost,%

Base Case : production of Stainless Steel

Break up of Production Cost,%

Case II : Production of Stainless Steel

Low Alloy

Stainless Steel

Index for Return on Capital Employed

Conclusion

- Low alloy & stainless steel can be economically produced utilising nickeliferrous lateritic ore/ chromite overburden
- Use of overburden will also reduce environmental problem due to dumping of overburden & clear large area presently occupied by overburden
- Sintering test at IMMT (RRL) Bhubaneswar and industrial trial carried out using 25-50% sinter by using chromite over burden as feed for BF charge at Mini Blast Furnace of Kalinga Works, Barbil has successfully produced 250 t alloy pig iron.
- Alloy pig iron is commercially produced in China & Brazil through small blast furnace using chromite over burden & further treated for production of stainless steel.

