Staying ahead in the World Steel Cost Curve:

Assumptions: FY'13

Production volumes and operating parameters:

 Actual FY'13 production volume and operating parameters applied where available, estimated values applied where specific information not available.

Input costs:

 Actual FY'13 data where available, estimated values applied where specific information not available

The **macro economic parameters** such as inflation, exchange rate & wage inflation are based on the actual data/ Annual Plan 2013-14 document

	UOM	FY'13
Inflation, WPI India	%	7.36%
Salary & Wages escalation	%	Actual
HCC (FOB price)	\$/t	193
Exchange Rate	Rs./\$	54.37

• Source: Annual reports / Internet /TSE AP 2012-13 document

lowest cost producer of HRC globally(FY'13)

- In FY'13, due to regulatory clamp down on iron ore mining in the states of Karnataka & Goa, India had to import 3.8 Mt of iron ore to supplement consumption requirement
- According to the order of the Supreme Court to stop all mining operations in Bellary District in Karnataka, activities from Thimmappanagudi Iron Ore Mines (TIOM) operated by VMPL was halted since July 2011
- One of the steel plant in India is correcting its business model by strengthening its upstream units (addition of new lime plant, coke ovens, pellet plant and on site electricity generation etc).

HRC Cost with bought out Raw Material

D-1 looses the cost-leadership

Lowest cost producer of Billet globally'(FY'13)

- D7 billet cost is higher due to two stage conversion (bloom-billet), however THE PROCESS enables to produce higher grade/special steel products
- D3 billet is through DRI-IF-EAF route (0.3Mt billet capacity)

Billet Cost with bought out Raw Material in FY'13

D-1looses the cost-leadership

Operating Efficiencies in Iron & Steel making operations

			BOF route						EAF	route	
KPIs	UOM	FP & LP	FP& LP	LP	FP	FP&LP	FP	FP	FP	FP	LP
BF Iron making											
Fuel rate	kg/thm	589	562	555	480	494	506	535	570	709	506
Injection rate (overall)	kg/thm	111	96	-	200	181	88	150	58	133	88
Injection rate (bigger fce)	kg/thm	141	100	-	200	200	74	150	58	133	74
Agglomerate	%	73%	86%	77%	95%	77%	98%	75%	84%	91%	98%
BOF/EAF Steelmaking		BOF	BOF	BOF	BOF	BOF	BOF	EAF	EAF	EAF	EAF
Gross Metallic Charge (HM+Scrap+Ore+Alloys)	kg/tcs	1170	1172	1227	1096	1073	1191	1205	1200	1206	1211
Scrap rate (scrap only)	%	5.6%	5.9%	7.5%	7.5%	13.8%	24.0%	4%	6.5%	4.5%	85.8%
DRI rate	%	-	-	-	-	2.8%	-	41%	43%	43.70%	-
Flux rate	kg/tcs	94	71	80	64	61	64	46	50	42	46

Shougang, installed two world-class, large-sized, modern Blast Furnaces in China - Their achievements

			Designi	arameters	S UI DIAST I	-umace:	s No.1 & I	10.2
		Constructed & innovated independently by	, Paramet	er		UO	M F	Factor
		Shougang	Effective	Effective inner volume		ma	3 55	500
		 Two world class super-sized modern blast 	Productiv	/ity		t/m3	3/d 2	.3
		furnaces in China	Annual p	roduction ca	apacity	Mt	t 8.	.98
	he Blast Furnaces'		Coke rate	Э		kg/	/t 29	90
(1)	Major Technical	 Equipped with advanced and practical 	Coal inje	ction rate		kg/	/t 20	00
	•	processes, mature and reliable	Fuel rate			kg/	/t 49	90
	Features	equipment, and energy-saving and	Agglome	rate		%	9	90
		environmental protection technologies	Slag ratio)		kg/	/t 25	50
		valuable reference for future super-sized	Oxygen e	enrichment	ratio	%	3	.5
			TRT pow	er generation	on	kWł	h/t 4	15
		blast furnace projects	One gen	eration cam	paign life	yea	rs 2	25
		No.1 BF and No.2 BF were blown in successfully on 21 May 2009 and 26 June 2010, respectively	No.1 BF	Key Techr Blow Producti (vity t/m3/d		Since Fuel Rate kg/t		
1		successfully on 21 May 2009 and 26 June 2010, respectivelySince blast furnaces successful blow-	Date May 09	Blow Producti (vity t/m3/d 0.851	r-In Coke rate kg/t 551	Fuel Rate kg/t 634		
	Operating	 successfully on 21 May 2009 and 26 June 2010, respectively Since blast furnaces successful blowins, all the technical and economic 	Date May 09 Jun 09	Blow Producti (vity t/m3/d 0.851 1.39	r-In Coke rate kg/t 551 503	Fuel Rate kg/t 634 565		
2	Operating	successfully on 21 May 2009 and 26 June 2010, respectivelySince blast furnaces successful blow-	Date May 09 Jun 09 Jul 09	Blow Producti (vity t/m3/d 0.851 1.39 1.447	r-In Coke rate kg/t 551	Fuel Rate kg/t 634 565 532		
2	Operating Performance	 successfully on 21 May 2009 and 26 June 2010, respectively Since blast furnaces successful blowins, all the technical and economic 	Date May 09 Jun 09 Jul 09 Augt 09	Blow Producti (vity t/m3/d 0.851 1.39 1.447 1.948	-In Coke rate kg/t 551 503 483 372	Fuel Rate kg/t 634 565 532 481		
2		 successfully on 21 May 2009 and 26 June 2010, respectively Since blast furnaces successful blowins, all the technical and economic parameters have been steadily and 	Date May 09 Jun 09 Jul 09 Augt 09 Sept 09	Blow Producti (vity 1/m3/d 0.851 1.39 1.447 1.948 2.117	In Coke rate 551 503 483 372 354	Fuel Rate kg/t 634 565 532 481 483		
2		 successfully on 21 May 2009 and 26 June 2010, respectively Since blast furnaces successful blowins, all the technical and economic parameters have been steadily and stably advancing 	Date May 09 Jun 09 Jul 09 Augt 09 Sept 09 Oct 09	Blow Producti (vity 1.39 1.447 1.948 2.117 2.216	kg/t 551 503 483 372 354 340	Fuel Rate kg/t 6334 565 532 481 483 489		
2		 successfully on 21 May 2009 and 26 June 2010, respectively Since blast furnaces successful blowins, all the technical and economic parameters have been steadily and stably advancing The blast furnaces have achieved large- 	Date May 09 Jun 09 Jul 09 Augt 09 Sept 09 Oct 09 Nov 09	Blow Producti (vity 1.39 1.447 1.948 2.117 2.216 2.273	In Coke rate 551 503 483 372 354 340 300	Fuel Rate kg/t 634 565 532 481 483 489 484		
2		 successfully on 21 May 2009 and 26 June 2010, respectively Since blast furnaces successful blowins, all the technical and economic parameters have been steadily and stably advancing The blast furnaces have achieved largescale operation with high efficiency, 	Date May 09 Jun 09 Jul 09 Augt 09 Sept 09 Oct 09	Blow Producti (vity 1.39 1.447 1.948 2.117 2.216	kg/t 551 503 483 372 354 340	Fuel Rate kg/t 6334 565 532 481 483 489		

Feb 10

Mar 10

2.336

2.370

287

270

482

481

• Source: Feature article from AIST.org through TSE library services

POSCO (Pohang) challenging newer cost levers

		Facility expansions at Pohang	Parameter	UOM	2010	2011
1	Volume	 BF#4 catches up with bigger size blast furnaces. Improved productivity Construction of new steel making plant. 	Increase in the inner volume of Blast Fce#4	m3	3795	5600
		Achieved early regular-operation (Target 57 days, actual 29)	Increase in Crude steel production	Mt	12.4	14.4
			Parameter	UOM	2010	2011
		 Improvement in the KPIs e.g : Increase in coal injection rate at BF#4 Lower gaseous fuel consumption at the sinter plant Increase in metallic yield at the BOF shop 	Coke rate	kg/t	315	293
			Coal injection rate	kg/t	180	200
(2)	KPI		BF Fuel rate	kg/t	495	493
			Sinter Plant gaseous fuel rate	Kcal / t Sinter	10210	7840
		#2	BOF metallic yield	%	94.8	95.9
		Improved productivity and profitability through recycling byproduct(dust, sludge	BOF Shop No.2 (HN	I+Scrap⊣	HBI cons	sumption)
			Parameter	UOM	2010	2011
3	Technology	 containing Fe) Botary Hearth Furnace: 140 kt/yr 	Scrap	kg/tls	109	144
		capacity HBI plant	Hot metal (including pig iron)	kg/tls	891	856
			HBI	kg/tls	27	29
		 Use of HBI in the BOF shop 				

POSCO (Pohang) challenging newer cost levers

Facility expansions at GwangyangBF#1 has been renovated to 6000M3 volume in 108 days in June 2016 from a volume of 3950 M3.The original volume was 3800 M3 built in April 1987

Posco used a new cooling system to minimise the damage s on the furnace during repair.

Cutting edge technology emdedded to enable introduction of more reducing gas into the furnace

Dry based dust collector used to enhance the recovery of energy Non steam quenched blast equipment to cool down slag- -less electricity.water.unpleasant smell and dusts

: Potential if operates at benchmark level > Rs. ~2,500 Crs. (Gross potential)

Parameters	UOM	POSCO (As Is)	POSCO (Normalised for INDIAN condition)	Typical Indian Plant	Rough Gap Rs. Crores	Rationale/comments
Solid Fuel Consumption	kg/t net sinter	64		80	166	Benchmark indicating gap of ~16 kg / t net sinter without normalising ; ~Rs. 13,543/t anthracite coal cost ; 7.34 Mt of net sinter production
Fuel Rate	kg/thm	491	574	589	295	Benchmark indicating gap of ~15 kg/thm after normalising for agglomerate %, sinter RDI, coke ash, coke CSR, & slag rate ; ~Rs. 22,400/t imported coke cost ; 8.86 Mt of HM production
Labour productivity	tcs/m/yr	2364		513	1247	Benchmark indicating gap of ~1851 tcs/m/yr without normalising for mechanisation ;~Rs. 10 lac/man/yr; average salary; 8.13 Mt of crude steel

* FY 12 figures

Of course this would have meant CAPEX for correction of technology & quality such as CDQ, sinter alumina etc.

Cost of Poor Quality > ~Rs. 1,000 Crs.

	UOM	Typical Domestic Unit	Overse as Unit	Difference	Impact Rs Crores	Rationale/Comments
COKE Ash ↓	%	15.3	11.4	4	~620	For every 1% increase in coke ash, coke rate increases by 8 kg
Coke CSR ↑	point	64.5	65.9	-1	~57	For every 1 point decrease in coke CSR, coke rate decreases by 2 kg
Sinter RDI	point	29.8	31.2	-1	~69	For every 1 point decrease in sinter RDI, coke rate decreases by 2.5 kg
Hot metal	%	0.86	0.51	0.35	~70	For every 0.1% increase in HM Si <u>hot metal</u> <u>charge</u> increases by 2.5 kg
Silicon	70	0.80	0.51	0.35	~146	For every 0.1% increase in HM Si <u>lime</u> <u>consumption</u> increases by 8.1 kg/tls
Hot metal │ Sulphur ↓	%	0.05	0.03	0.02	~100	For every 0.01% increase in HM Sulphur DS compound increases by 0.8 kg/tls

- Of course this would have meant CAPEX for correction of technology & quality
- There could be some degree of overlap between the cost of not operating at benchmark level (slide#9) and cost of poor quality

Potential savings of ~Rs. 50 crores for every 1 unit of improvement in key cost levers

Parameters	UOM	Domes tic Unit	Improv ement of 1 unit	Potenti al (Rs. Crs.)	Assumptions/comments
Solid Fuel Consumption	kg/t net sinter	80	79	10	~Rs.X /t anthracite coal cost ; T1 Mt of net sinter production
Fuel Rate	kg/thm	589	588	20	~Rs.Y /t imported coke cost; T2 Mt of HM production. Considering replacement of purchase coke.
Labour productivity*	tcs/m/yr	513	514	3	~Rs. 10 lac/man/yr average salary.
HM+Scrap	kg/tcs	1112	1111	19	Based on increased throughput. ~Rs.Z /t NR from sale of prime billet; T3 Mt of crude steel production.

Inputs for thought

Trend in steel industry

Strategy to secure future RM through vertical integration and long term commitments.

Investment in specific equipment and process control to counter raw materials price increase and grade decline

Future RM volumes are secured through vertical integration and long term commitments

	Level of integration / commitments	Assets	Company
	 Increase further vertical integration Iron Ore: 50% up to 70% Coal: to 20% 	 Iron Ore: Canada (QCM), Brazil, Liberia, Algeria, Baffinland, Bosnia, CIS (Ukraine, Kazachstan), Mauretania Coal: US, Russia 	ArcelorMittal
Vertical Integration	 Increase further vertical integration Iron Ore (group-wide: up to 50-70%) 	 Iron Ore: Canada (New Millennium) Coal: Mozambique 	TATA TATA STEEL
	Current vertical integration level of ~25% for iron ore, no further integration plans announced	 Iron Ore: Austria (Erzberg) 	voestalpine
Long term contracts	80-85% of iron ore volume covered under long term contracts		ThyssenKrupp 🙆

Steelmakers are investing in specific equipment and process control to counter raw materials price increase and grade decline

Challenge	Options	Observed investments / actions
High coking coal price	Increase PCI level	 Invest in additional PCI facilities Improve process control to allow BF operation with high slag volume while trying to increase PCI rate Beneficiation of ore to reduce gangue level To work on coal blend to improve coke quality.
	Increase use of non coking coal in blend	 Switch over to stamp charging Coal dryer to increase share of non-coking (USS) Invest in briquetting equipment to increase share of non coking coal (NS)

Steelmakers are investing in specific equipment and process control to counter raw materials price increase and grade decline *contd....*

Challenge	Options	Issues	Observed investments / actions
High Pellet	Increase sinter productivity	Decreasing iron ore size	 Install slit wires, to increase permeability on the sinter strand by pre segregating the charge Install vertical / horizontal rigs to create a more permeable load on the sinter strand
price	Maintain sinter quality	Deteriorating chemical quality of natural iron ore.	 Maintain RDI level even with high Al2O3 level by spraying Cacl2. Go for multilevel bedding & blending facilities to homogenise the plant reverts from deferent sources.

Steelmakers are investing in specific equipment and process control to counter raw materials price increase and grade decline *contd....*

Challenge	Options	Issues	Observed investments / actions
	Increase the portfolio of sintering fuel	Cheaper sintering fuels have higher %S & %N leads to higher emission rates	 Invest in waste gas circulation Install MERON (Maximised emission reduction of sintering) Install EPS (Electrostatic Precipitator)
	Create flexibility on RM burden	 Plant faces storage constraints Less expensive raw material is associated with quality issues 	 Invest in extra bunker storage capacity. This will help in shielding raw material from rain. Optimise blending of good and inferior quality raw material to arrive at an acceptable range Optimise the use of plant internal reverts

Steelmakers are investing in specific equipment and process control to counter raw materials price increase and grade decline contd...

Challenge	Options	Issues	Observed investments / actions
Volatile steel demand leading to regular adjustment of Pig Iron supply	Create flexibility in hot metal productivity	Adjusting the outputs makes the blast furnace process less stable	 Invest in process knowledge to optimize the BF process under a wider productivity range (a.o., O2 input), taking into account maximum flexibility at the steel shop. Design the BF process to maximise productivity and utilise the excess Hot Metal profitably. Optimize scrap proportion in the charge at the steel melting shop

SOME KNOWN FACTS:

- Blast Furnace performance level improves with improvement in raw material quality.
- With increase in BF size, raw material quality requirement becomes stringent and productivity takes a dip with the same quality level.
- Improved quality level is associated with increase in cost
- The cost of steel manufactured goes up and bottom line is impacted.

WHAT SHOULD THE BF OPERATOR DO?

- One needs to weigh the option between local optima and global optima and decide action plan.
- In the larger interest, it is important to find one's own way to beneficiate the domestic raw material to improve its quality and work on one's processes to find ways and means to put this raw material to profitable use.

Let us make an attempt to understand the reasons for the gap and their contribution:-

Raw material front

	Reason	Contribution range)
	Poor quality of raw material	40-45	
	Poor quality of Sinter & pellet	45-50	
	Lower level of PCI injection	10-15	
Facility Hardware			
Reason		Contribution range	
Poor PCI capacity		25-30	
Inadequate Instrumentation		10-15	
System and Skil	-	45.20	
Judgment ,control action etc.		15-20	

To improve productivity and maximise energy utilisation (key for sustainability) one needs to Work on:-

- Burden Quality Improvement.
- Increment in prepared Burden.
- Increment in PCI rate.
- Implementation of Torpedo covers.
- Replacement of Coke / PCI by C B M or C N G.

Thank You.