CNT BASED NANODEVICE DEVELOPMENT

Dr P K Chaudhury Solid State Physics Laboratory Delhi-54

Nanotechnology/Nanoelectronics

- Nanotechnology is the design and construction of useful technological devices whose size is a few billionths of a meter
- Nanoscale devices will be built of small assemblies of atoms linked together by bonds to form macro-molecules and nanostructures
- Nanoelectronics encompasses nanoscale circuits and devices including (but not limited to) ultrascaled FETs, quantum SETs, RTDs, spin devices, superlattice arrays, quantum coherent devices, molecular electronic devices, carbon nanotubes, Graphene.

Moore's law and scaling theory

Moore's Law : No. of transistors on a single IC "Chip" has roughly doubled every 18months

Ideal scaling:

Reduce W,L by a factor of <u>a</u> Reduce the threshold voltage and supply voltage by a factor of <u>a</u> Increasing all of the doping levels by <u>a</u> (W,L,tox,VDD,VTH, etc, are scaled down by a factor <u>a</u>) For a ideal square-law device, Id is reduced by <u>a</u>, but gm and intrinsic gain Gm* ro remain the same.

As scaling into submicron region, Short Channel effects prevent further scaling.

CARBON NANO-TUBES

CNT BASED DEVICE

- Nano-devices
 - Resistor
 - Capacitors
 - Interconnects
 - Transistor
 - Logic Gates
 - Data Storage
 - THz Devices
 - Field Emitters
 - Sensors

CNTFET

Front Gate FET with CNT p and n channel

Performance superior to 50 nm, 1.5nm t_{ox} MOSFET

	p-type CNFET	Ref. 10	Ref. 11
Gate length (nm)	260	15	50
Gate oxide thickness (nm)	15	1.4	1.5
V_{t} (V)	-0.5	~ -0.1	~ -0.2
$I_{\rm ON}~(\mu {\rm A}/\mu {\rm m})$	2100	265	650
$(V_{ds} - V_{gs} - V_t \approx -1 \text{ V})$			
I_{OFF} (nA $/\mu$ m)	150	< 500	9
Subthreshold slope (mV/dec)	130	~ 100	70
Transconductance (μ S/ μ m)	2321	975	650

Wind et al (IBM), APL May 2002

HIGH SPEED APPLICATIONS

The HF capability of these devices seems to be well beyond 50 GHz.

Parallel-CNT Field Effect Transistors for High Speed Applications

Carbon Nanotube Electron Guns for Nanolithography (EC project NANOLITH)

Carbon Nanotube

Electron Guns

Traveling Wave Tube

COLD CATHODE FIELD EMITTERS

CNT BASED SENSORS

CHEMICAL SENSORS

PHYSICAL SENSORS

Monolithic Integration of Carbon Nanotube Devices with Silicon MOS Technology

An integrated circuit combining single-walled carbon nanotube (SWNT) devices with n-channel metal oxide semiconductor (NMOS) field effect transistors has been demonstrated at University of California. Shows many possibilities, including electronically addressable nanotube chemical sensor arrays.

Challenges

•Although CNT devices and interconnects separately have been shown to be promising in their own respects, there have been few efforts to combine them in a realistic circuit

•Several process-related challenges need to be addressed before CNT-based devices and interconnects can enter mainstream VLSI manufacturing

•Problems include purification, separation, control over length, chirality and desired alignment, low thermal budget and high contact resistance

Present Interest @ sspl

Development of Enabling Technologies for Carbon Nanotube Based Sensors

- * Enabling Technologies SWNT Growth, Purification & Functionalization
- * Prototypes for Testing CNT Resistor & FET Sensor Elements

Development of CNT based Electron Emitter for Vacuum Microelectronics Devices

- CNT type FE Arrays for external grid
- CNT type FE Arrays with integrated grid

CNT GROWTH FOR DEVICES

- Selective and controlled Growth
- Aligned Growth
 - Vertically aligned to surface
 - Horizontally aligned
- Lower Growth Temperature

Activity Flow Diagram

CNT Growth Setups: SSPL made

LPCVD System

CVD System

PECVD System

Analysis of Catalyst film

- Surface roughness ~ 0.65nm -0.90 nm
- The Fe-particle size reduces with thickness of the Fe Film
- The particle size is from few nanometer to 30 nm in 2 nm film
- The particle size is from 10-50 nm in 4 nm film
- The particle size is from 20-100 nm in 8 nm film

Fe-2 nm

Fe-8 nm

Fe-4 nm

Carbon Nanotube SEM Images:CVD

Unaligned CNT growth

Selective and Vertically Aligned Growth

Array of 50 micron dots

50 micron dot

CNT on 1 micron dot

LPCVD GROWTH

Growth Parameter : 1000°C, $H_2@1$ SLM, $NH_3@$ 0.5 slm, CH_4 0.2 SLM, T=30 min

Growth Parameter : 1000 °C, H_2 @1 SLM, N_2 @ 1 SLM, CH_4 @.5 SLM, T=10 min

Fe-2nm

Field Emitter Arrays (FEA) / Cold Cathodes

Field Emitter Arrays (FEA)

- Carbon Nanotubes based FEA
- Cathode of 1 cm diameter
- * 100 mA Emission Current
- 5000 Hours of Life

External Grid Approach

- **FEAs on Planar substrate**
- **4** External Grid to be mounted separately

Integrated Grid Cathode

- **CNT growth inside silicon Pits**
- Integrated thin-film Grid

Field Emitter Arrays (FEA) / Cold Cathodes

100 mA/cm2 Current Density @6 volts/micron

5um x 5 um CNT dot with 20 μm spacing

Fabrication of Cathodes With Integrated Grid

Process Steps Involved

CNT Sensors : Two Approaches

CNT Purification And Dispersions

CNT Purification

- **Impurities:** Amorphous Carbon & Catalyst
- Developed multi-step purification method
- Reducing metal content • from ~ 34% to ~1%

CNT Dispersions

- Media
 - Aqueous (Using SDS surfactant)
 - Organic
 - Dimethyl formamide (best)
 - Dichloromethane
 - Trichloroethylene
 - N-methyl pyrrolidine
 - Dimethyle acetamide
- Concentration
 - 50 mg/ml, 200 mg/ml, 800 mg/ml

DMF

SWNT Functionalization & Characterization

- Carboxylation using mixture of HNO₃ and H₂SO₄
- Amidation with Thionyl Chloride and Ethylene Diamine
- Hydroxylation with KMnO₄: TPABr (PTC)

Au & Pd Decorated CNT'S

Dielectrophoretic Assembly of individual CNT devices (design)

High yield fabrication

Dielectrophorisis @ sspl

Dielectrophorisis @ sspl

CNT Thin Film Resistor (TFR)

- The maximum, minimum and average TTR:
 - TFR1: $2.02k\Omega$, $0.44k\Omega$ and $1.12k\Omega$.
 - $TFR2:63\Omega,31.68\Omega and 46.43\Omega$
- Standard Deviation with location:
 - TFR1 : 46.21% and TFR2: 19.8%
- Contact resistance and sheet resistance:
 - TFR1 0.33k Ω and 0.31k $\Omega/$.
 - TFR2: 14.48 Ω and 10.2 $\Omega/$.
- Observed several types of regions of nonuniformity between the contacts:
 - Well connected CNT-sheet,
 - Partially connected CNT-sheet
 - Missing CNT-sheet

Comparison of IV characteristics of all metal-SWNT-metal contacts

Variations in resistance of the SWNT with Temperature

Contact Resistance :~ 60.67 Ω
Sheet Resistance: ~14.25 Ω/mm

Response of CNT-TFR to NH₃ and ethanol vapors @sspl

Challenges

• No clear path is seen for extending CMOS (complementary metal oxide semiconductor) technology beyond the roadmap horizon of 2020, when devices will have a physical gate length of only 6 nm.

- A transition to an alternative technology is needed before 2020 because of the time and energy needed to replace CMOS. The technology can not be replaced abruptly.
- Nanotechnology will pose many ethical and societal questions; these will need to be addressed.
- The skilled work force required to continue the exponential increase in technology is lagging. More people need to be trained in science and technology.

Properties and applications

Properties

Mechanical: highest Young's modulus, highest tensile strength Thermal: highest thermal conductivity Electrical: ballistic transport in metallic tubes, highest carrier mobility in semiconductor tubes

Applications:

Carbon nanotube composites Electrochemical devices Hydrogen storage Field emission devices Nanoelectronic devices Sensors and probes