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Nanotechnology/Nanoelectronics

¢ Nanotechnology is the design and
construction of useful technological devices
whose size is a few billionths of a meter

Nanoscale devices will be built of small
assemblies of atoms linked together by bonds to
form macro-molecules and nanostructures

® Nanoelectronics encompasses nanoscale circuits
and devices including (but not limited to) ultra-
scaled FETs, quantum SETs, RTDs, spin devices,
superlattice arrays, quantum coherent devices,
molecular electronic devices, carbon nanotubes,
Graphene.



Moore’s law and scaling theory
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Future

Nano-Devices

Solid state
nanoelectrolnic devices
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CNT BASED DEVICE

Nano-devices
= Resistor

= Capacitors

= |nterconnects
= [ransistor

= Logic Gates
= Data Storage
= [Hz Devices
= Field Emitters
= Sensors




CNTFET

Front Gate FET with CNT p and n channel Gate
Gate oxide I[:*’;JK orfil  CNr1

Performance superior to 50 nm, 1.5nm t_
MOSFET

S0 m—
HEE -'ﬂ -:E‘i
p-type CHFET  Rel 10 Ref 11
Gate length (nmy} 260 15 0
Crate oxide thickness (nm) L5 1.4 [.5
Fo (Vi 0.5 - (.1 e L
o (e pamy 2100 265 50
e B V=1V
.Ir|::|F|.' [I'I.ll'l..':f.lfl'l'l] [ 50 1] '.:l
Subthreshold slope (mY/dach [30 - 100 it
Franzcomductance (pS pm) 2321 975 500

Wind et al (IBM), APL May 2002




HIGH SPEED APPL
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Parallel-CNT Field Effect Transistors for High Speed Applications
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CNT BASED SENSORS

SWNT network
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Monolithic Integration of Carbon Nanotube Devices
with Silicon MOS Technology

A0" Nmos
hinary tree

l - An integrated circuit combining
Al Al1’ (b) CNT
S —" T4 single-walled carbon nanotube

n+ poly-Si n+ poly-Si

- . ee | ™. (SWNT) devices with n-channel
e '" o] Beed] . metal oxide semiconductor

Jim 11 (NMOS) field effect
transistors has been demonstrated
at University of California. Shows
many possibilities, including
electronically addressable
nanotube chemical sensor

arrays.




Challenges

*Although CNT devices and interconnects separately have been
shown to be promising in their own respects, there have been few
efforts to combine them 1n a realistic circuit

*Several process-related challenges need to be addressed before
CNT-based devices and interconnects can enter mainstream VLSI
manufacturing

*Problems include purification, separation, control over length,
chirality and desired alignment, low thermal budget and high
contact resistance



Present Interest @ sspl

Development of Enabling Technologies for
Carbon Nanotube Based Sensors

* Enabling Technologies ez molecules
SWNT Growth, Purification & Functionalization e
*  Prototypes for Testing
CNT Resistor & FET Sensor Elements FET structure

CNT based gas-sensor

e ®
MNanotube

Development of CNT based Electron Emitter

for Vacuum Microelectronics Devices

¢+ CNT type FE Arrays for external grid
¢+ CNT type FE Arrays with integrated grid




CNT GROWTH FOR DEVICES

o Selective and controlled
Growth

«  Aligned Growth

. Vertically aligned to surface
. Horizontally aligned

« Lower Growth Temperature

Signal A= SE1 1
EHT= 500Ky WD= 2Zmm Photo Mo, = 1343
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Analysis of Catalyst film

e Surface roughness ~ 0.65nm -0.90 nm 1 AR B
. . . . 10°4 :
* The Fe-particle size reduces with thickness ;

of the Fe Film

* The particle size is from few nanometer to
30 nmin 2 nm film

Reflectivity (a.u.)

* The particle size is from 10-50 nm in 4 nm
film

* The particle size is from 20-100 nm in 8 nm
film

Signal A = InLens e Signal A = InLens i EHT = 7.00 K Signal A = InLens e
— WD = 58mm Mag = 100.00 K X Time :13:08:00 H WD = 58mm Mag = 100.00 K X Time :13:0035 H WD = 58mm Mag = 100.00 K X Time :1257:18

Fe-8 nm Fe-4 nm Fe-2 nm




Carbon Nanotube SEM Images:CVD
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LPCVD GROWTH

{ ¥

o KV - f
EHT = 6.00kV Signal A= InLens
WD = 4.0mm Mag = 50.00 K X Time :11:53:42 |

Signal A = InLens
WO = 3.8mm Mag = 100.00 K X Time :10:40:10

Growth Parameter : 1000°C, H,@1 SLM, NH, @
0.5 slm, CH, 0.2 SLM, T=30 min

200 nm EHT = 10.00 kv Signal A = InLens.
WO = 6.6 mm Mag = 5000 KX Time :15:37:03

Signal & = InLans.

Signal A = InLans .
WD= 38 mm Mag = 513.37 KX Tirme :10:41.06

WD = 28mm Mag = 20000 K X Time 15:28:41

Growth Parameter : 1000 °C, H,@1 SLM,
N,@ 1 SLM, CH,@.5 SLM, T=10 min



Field Emitter Arrays (FEA) / Cold Cathodes

Field Emitter Arrays (FEA)
+» Carbon Nanotubes based FEA
«» Cathode of 1 cm diameter

«* 100 mA Emission Current
«* 5000 Hours of Life

External Grid Approach

% FEAs on Planar substrate
4+ External Grid to be mounted separately

Integrated Grid Cathode

% CNT growth inside silicon Pits
%+ Integrated thin-film Grid
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Field Emitter Arrays (FEA) / Cold Cathodes

JE Curve
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Fabrication of Cathodes With Integrated Grid

Sample Cleaning Metal

=~ Si02
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CNT Sensors : Two Approaches

Grow CNT in powder form PRINCIPLE Prepare contacts on substrate
Conductance

Change
Purify CNT then Disperse DEVICE Deposit Catalyst over contacts

& Functionalize them
CNT-Resistor

CNT-FET Directly grow CNT between

WO con
Pattern Contacts on a substrate two contacts

Contacts

- b

Spread CNT between Contacts Functionalize CNT

:3‘ CNT

Gas molecules




CNT Purification And Dispersions

CNT Purification CNT Dispersions
* Media

. |mpurities: Amorphous — Aquegus ( Using SDS surfactant)

Carbon & Catalyst — Organic |

i » Dimethyl formamide (best)

* De\_/?lop_ed mUItl'Step « Dichloromethane

purification method « Trichloroethylene
« Reducing metal content L ey pyrroldine

from ~ 34% to ~1% . |me.thyle acetamide

© - Concentration

— 50 mg/ml, 200 mg/ml, 800 mg/ml




e Carboxylation using mixture of HNO; and H,SO, Hydroxylation KMDO4 : TPABr (PTC)
e Amidation with Thionyl Chloride and Ethylene Diamine o

T
e Hydroxylation with KMnO,: TPABr (PTC) .o o

Icoholic C-O
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Dielectrophoretic Assembly of individual

CNT devices (design)
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Dielectrophorisis @ sspl
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Dielectrophorisis @ sspl

100 nim EHT = 8.00 kv Signal A = InLens 200 nm EHT = 8.00kV Signal A = InLens
— WD = 4.0 mm Mag = 100.00 K X Time 10:16:18 (| WD = 4.0 mm Mag = 50.00 K X Time :10:54:58

1 pm EHT = 10.00 kv Signal A = InLens 1
1 WD = 4.1 mm Mag= 10.00 K X Time :11:40:24




e  The maximum, minimum and average TTR:
CNT - TFR1:2.02kQ,0.44kQand1.12kQ.
- TFR2:630,31.680and46.430
e Standard Deviation with location:

Thin - TFR1:46.21% and TFR2: 19.8%
e Contact resistance and sheet resistance:
F ‘l - TFR10.33kQ and 0.31kQ/[ .
1 m - TFR2:14.48Q and 10.2Q/(.
e  Observed several types of regions of non-

ReSiStor uniformity between the contacts:

—  Well connected CNT-sheet,

—  Partially connected CNT-sheet

0.15 T T 70
T T v 500
s (1 /AU -SWNT- Cr/Au : : ' ' j ' ! j j j J
o Cooling cycle pair 1 TLM measurements over TFR 04 = row5
0.10 Cr/Au “SWNT- Pt = Heating cycle pair 1 ° :gx?s
===Pt-SWNT-Pt o Cooling cycle pair 2 400 | ——Linearfit |
0.05 ===Pt- SWNT- Pt/Au — e Heating cycle pair 2 a
03} ——py/Au- SWNT- Pt/AU Seol - Linear fit ] ...t
Q g 300r sl T
0.00F o 3 (I
: :
& 200} . 1
-0.05} @, i ot
$ i ) a
-0.10p o 100 # R,=60.67 & 1
Rgpeer = 14.25 Q//mm
-O. 1 5 i i i i A N N 0 1 1 1 1 1 1 1 1 1
-6 -4 2 0 2 4 6 4800 550 300 350 0 2 4 6 8 10 12 14 16 18 20

Voltage (V) Length (mm)

Temperature (K)

Variations in resistance of ] Contact Resistance :~ 60.67 Q

the SWNT with Temperature

Comparison of IV

characteristics of all metal-
SWNT-metal contacts

L Sheet Resistance: ~14.25 Q/mm




Response of CNT-TFR to NH; and ethanol vapors
@sspl
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Challenges

* No clear path is seen for extending CMOS (complementary metal
oxide semiconductor) technology beyond the roadmap horizon of 2020,
when devices will have a physical gate length of only 6 nm.
- A transition to an alternative technology is heeded before 2020
because of the time and energy needed to replace CMOS. The
technology can not be replaced abruptly.
* Nanotechnology will pose many ethical and societal questions;
these will need to be addressed.
* The skilled work force required to continue the exponential increase
in technology is lagging. More people need to be trained in science and
technology.

Thamk you



Properties and applications
Properties

Mechanical: highest Young’s modulus, highest tensile
strength

Thermal: highest thermal conductivity

Electrical: ballistic transport in metallic tubes,highest carrier
mobility in semiconductor tubes

Applications:

Carbon nanotube composites
Electrochemical devices
Hydrogen storage

Field emission devices
Nanoelectronic devices
Sensors and probes



