ADVANCES IN SPECIAL STEEL PRODUCTS INCLUDING STAINLESS STEELS

DR.L.K.SINGHAL AMRITRAJ BHANJA JSL STAINLESS LTD CONSERVATION OF DEPLETING ENERGY & RAW MATERIAL RESOURCES

LOWER LIFE CYCLE COST

MAJOR DRIVING FORCES

INCREASING PROPERTY REQUIREMENTS

GREATER FOCUS ON AESTHETIC APPEAL

ADVANCED HIGH STRENGTH STEELS

MICRO-ALLOYED STEEL (HSLA)

- Micro-alloying of V, Nb, Ti
- Strengthening
 - Solid Solution (P, Mn, Si)
 - Precipitation & Grain

Refinement (Nb, V)

Medium & High Strength,

Moderate Formability

- ✤ YS: 250-700 MPa
- ✤ T-El: 20-35 %.

MICRO-ALLOYED STEEL APPLICATIONS

LINEPIPES [GAS/OIL]	BUILDING STRUCTURES
IEAVY DUTY	MINING & AGRI
/EHICLES	INDUSTRY

TRANSMISSION TOWERS

SHIP BUILDING

HIGH RISE BUILDING STRUCTURES

PIPELINES

DUAL PHASE STEEL

- Alloying with Mn, Si, Cr, Mo etc.
- Coiling at Low Temperature
- Islands of Martensite in Ferrite.
- Grain Refinement and
 Precipitation Strengthening
 (Nb, Ti, V etc.)
- Solid solution strengthening (Mn, P, Si etc.)

METALLURGICAL ASPECT TO OBTAIN DP STEEL

- I + II Formation of Austenite
- III Formation of Ferrite
- IV Formation of Martensite/Bainite
- V Tempering of Martensite/Bainite

- > DP STEELS ARE BAKE-HARDENABLE.
- INCREASE IN YIELD STRENGTH IN DP STEELS OF ABOUT 140
 MPa AFTER FORMING & BAKING.
- LIMITED INCREASE IN YS BY WORK HARDENING IN HSLA DUE
 TO HIGH YS/TS RATIO.

DUAL PHASE STEEL APPLICATIONS

REINFORCEMENTS. STRUCTURAL PARTS

- ➢ Y.S. ~1450 MPa
- ➤ T.S. ~1650 MPa
- % Elongation (min) 8

APPLICATIONS

TRENDS IN MARTENSITIC STEEL

INITIALLY HIGH CARBON CONTENT (QUENCHED & TEMPERED)

ALLOYING WITH Ni, Mo FOR STRENGTH & TOUGHNESS (QUENCHED & TEMPERED)

> PART SUBSTITUTION BY Mn, Cr, B (QUENCHED & TEMPERED)

> > MICRO-ALLOYING (V,Nb,Ti) – THERMO-MECHANICALLY CONTROLLED PROCESSING

Based on TMCP & Tempered Martensite

	С	Ni	Cr	Мо	V	Ti	Р	S
HY 80	0.15	3	1.5	0.5	0.03	0.02	<0.015	<0.008

- ➢ Y.S. 551 MPa (min.)
- % Elongation (min) 20
- Charpy Impact 47.5 Joules @ -49 °C

SUBMARINES

METALLURGICAL ASPECT TO OBTAIN TRIP STEEL

TWIP STEEL X5 MN AL SI 25 3 3

High Nitrogen Austenitic Stainless Steel DIN 1.3816 -X8CrMnN18-18

INTERSTITIAL FREE FERRITIC STAINLESS STEELS								
Grade	%C	%Cr	%Ti/(Ti + Nb)	%Mo	%N			
409L	0.01	11	~ 0.2	-	0.01			
436L	0.01	16	~ 0.3	1	0.01			
439	0.01	17	~ 0.3	-	0.01			
441	0.01	18	~ 0.5	-	0.01			
444	0.01	18	~ 0.4	~ 2	0.01			
446	0.1	23	-	-	-			

Ti, Nb or Ti+Nb stabilized grades

Advantage

 Improved Corrosion resistance
 Superior Formability
 Improved Weldability
 Superior Toughness
 Lower DBT Temp.

Low C, Low N Ferritic Stabilized with Ti/Nb

Finding increasing application due to

- Comparable Corrosion Resistance 441 vs. 304 grade
- Superior Drawability : High r-bar value
- Good Ridging Resistance
- Superior Weldability in comparison to classical Ferritics

Applications of 439

 \succ Automotive exhaust manifolds and mufflers

- Direct fired hot water tanks
- Food equipments
- ≻Lift panels

Electrical appliances: Washing machine drum microwave ovens
Sugar industry: Sugar-cane juice ducts, heaters, evaporators, crystallization units

Applications of 441

Solar panelSolar hot water tank, Solar Collector

>Exchanger tubes: Sugar & energy industry

>Exhaust system: manifold, catalytic converter

SUPER FERRITIC STAINLESS STEELS WITH HIGH CORROSION RESISTANCE

	Grade	Cr	Мо	Ti
Super Ferritic Corrosion Resistant	44626	25-27	0.75-1.5	0.2
Super Ferritic Heat Resistant	44600	23-27	-	-

Applications

- ≻Boiler tubes
- ≻Cement kilns
- ≻Waste heat boilers
- ≻Salt baths
- ≻Heat treating
- ➢Incinerators

STAINLESS STEELS WITH HIGH CORROSION RESISTANCE Improved Pitting Corrosion Resistance **Benefits of Interstitial Nitrogen** Improved Weldability Improved Formability-TRIP Optimization Reduced Material Cost Reduced Processing Cost N08926/1.4529 32760 40 PREN=%Cr+3.3X%Mo+16X%N 300 Servie 38 **Biodur** 2205 904L 108 34 31727 400|Ser **X8CrMn** 30 **317LN** N18-18 Sea Water 20 °C 317L 26 316N 2304 Sea Water Env. 4.4.4 **216L** 316 2101 22 434 202 **Industrial Env & Exteriors** 304 439 18 301 201

420

409

410

14

Water & Interiors

Dry applications, Automotive Exhaust System,

Railway Wagons, Cutlery, Razor Blade

High Performance Austenitic Stainless Steels

Grade	С	Cr	Ni	Mo	Cu	Ν
31727/NAS 155N	0.02	18	15	4	3	0.2
Super Austenitic EN 1.4529/NAS 255NM	0.01	20	25	6	1	0.2

APPLICATIONS

31727

Chimneys and dampers of high sulfur fuel Dilute sulfuric acid tanks

Pollution control: Flue gas desulphurisation (absorber, ducts)

Natural and treated seawater

- **EN** system, **desalination plants**
- **1.4529** Bleaching equipment for pulp and paper industries

Chemical industries: Phosphoric acid & Sulphuric acid plants

BLEACHING EQUIPMENT

CHIMNEYS

Duplex & Super Duplex Stainless Steels

Low carbon and intentionally added nitrogen for:

- **>**Superior Inter-grannular corrosion resistance
- Higher pitting resistance
- > Improved Weldability

	Grade	С	Cr	Ni	Mo	Ν	W
Lean Duplex	2101	0.03	21	1.5	-	0.22	-
Duplex	2205	0.02	22	5	3	0.16	-
Super Duplex	UNS 32760 (ZERON 100)	0.02	25	7	3	0.25	0.5

Nitrogen Alloying has made Duplex Stainless Steel Readily Weldable

APPLICATIONS

TANKS

Lean Duplex 2101	Tanks: Palm oil, Wine, Marble slurry, Potable and Sewage water, Ethanol, Fruit juice, Biodiesel			
2101	Infrastructure: Bridges, Sluice gates			
	Chemical industry: Sour gas piping, Heat exchanger, tanks and vessels for chloride-containing media			
Duplex	Oil and Gas industry: Piping and process equipment, offshore structures			
2205	Cargo tanks in ships for transport of chemicals			
	Flue gas desulphurization systems, Electrostatic precipitators			
	Pulp and Paper industry: Digester			
Super	Sea water Desalination Plants			
Duplex 32760	Sea water Pumps			

ROTARY PUMPS

IT IS AMAZING THAT STILL GRADE 304 (18Cr-8Ni) ACCOUNTS FOR 50% OF TOTAL S.S PRODUCTION WORLDWIDE

Year

0.05N nearly replaces 1%Ni

Cost per Kg of Input Materials						
Steel Scrap	Rs 20					
Cr (From HC Fe-Cr)	Rs 110					
Mn (From HC Fe-	Rs 80					
Nickel	Rs 1250					

LUW CUSI ALIENNAIIVES IU IOUI-

				0	N T -			
RE	QUIRE	EMENT		<u>×</u>		ATIONS		SWITCH TO
UNWEL	DED AF	PPLICA	TION	DECORAT PANELS	WARE,WI	HITE GOC ES, WALI	JDS,	Cr 16+
Grade	%C	%Cr		A ST	1000			1000
430	0.1	16	E.				(i)	
			FC	S	L'			
WELDED CORROS SIMILAR	O APPLIC ION RES TO 304	CATION SISTANC	WITH CE	WELDEI EXTERIC	D TUBES, DRS	TANKS,	4	444 444
Grade	%C	%Cr	%Ti/	(Ti + Nb)	%Mo	%N		
439	0.01	17	~	~ 0.3	-	0.01		
441	0.01	18	~	~ 0.5	-	0.01		
444	0.01	18	~	~ 0.4	~ 2	0.01		

REQUIREMENT		APPLICAT	SW	ІТСН ТО	
HIGH STRENGTH & HIGH FORMABILITY	DEEP DF SINKS, E HOSE CL	RAWN KITCH LEVATORS, A AMPS etc.	ENWARE, AUTOMOTI	ve 2	04Cu
Grade C	Cr	Mn	Ni	Cu	Ν
$J204Cu$ ≤ 0.1 16 (UNS S20430)	5.0-17.5	6.5-9.0	1.5-3.5	2.0-4.0	0.1-0.2
MECHANICAL PROPERTIE 800 500 400 500 400 200 100 0 Y.S. T.S	I204Cu	70 60 50 40 30 20 10 0	60 	58 J204Cu	

DRAWABILITY OF 204Cu:

APPLICATIONS OF 204Cu

Catering and food processing: Deep drawn kitchenware, cookware, milk cans

Consumer durables:

Toasters, microwave ovens & washing machines outer body parts, mobile case/parts Architecture, building and construction: Handrails for staircase elevators, sinks

Transport (Automotive): Hose clamps, safety belt anchors

SINKS

DEALIDEMENT										
K	EQUI			SWITCH IU						
HIGH STRENGTH & SUPERIOR CORROSION RESISTANCE						ן ST	LEAN DUPLEX AINLESS STEEL			
	Grad	e C	Cr	Ni		Cu	Mn N			
Low Ni Duplex	2101	0.03	21	1.5		-	5 0.22	2		
Ni Free Duplex		0.03	21	0.3		1.5	5 0.22	2		
Test Media (Boiling	g)	Duplex Ni Free	Duplex Low Ni	304	316L					
1% Oxalic Acid		Α	Α	B	В		A < 0.1 mmpy			
5% Acetic + 5% Form	nic	Α	Α	В	В		B - 0.1-1.0 mmpy			
50% Nitric		Α	Α	В	В		C – 1-3 mmpy			
1% H ₂ SO ₄		В	В	Ε	С		D – 3-10 mmpy			
$5\% H_2SO_4 + 20\%$ (NH ₄) ₂ SO ₄		В	В	Е	D		E > 10 mmpy			

IT IS PERFECTLY FEASIBLE TO SWITCH TO MORE COST EFFECTIVE GRADES WITH HIGH FUNCTIONALITY

Conclusion:

Continuous evolution of new attractive grades based on metallurgical concepts from interstitial free to high interstitial grades. > Trend towards leaner alloys with higher strength & enhanced formability for material conservation. > Thrust on controlled rolling & accelerated cooling to avoid expensive heat treatment.