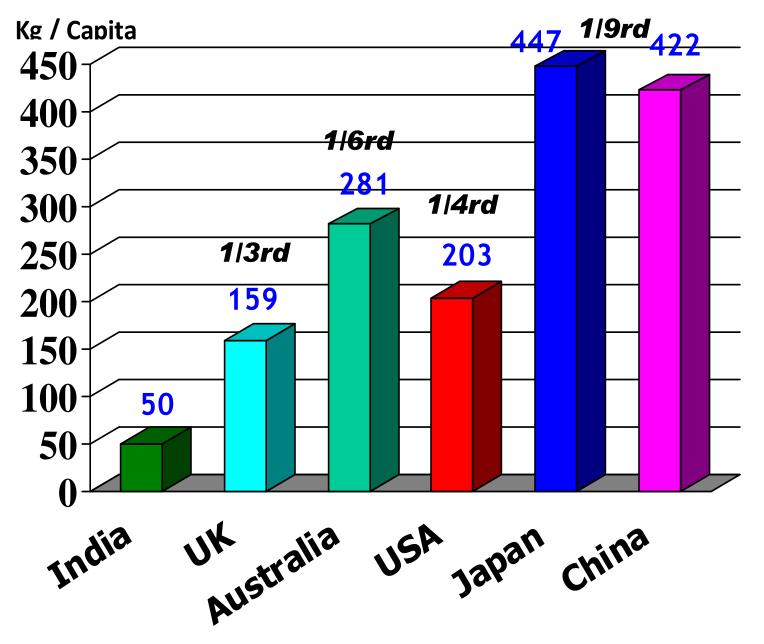
Steel Construction in India--Its Potential and Cost Competitiveness

Prof. (Dr.) S.R. Mediratta

Director General Yamuna Group of Institutions, Gadholi, Yamuna Nagar

Ve shall cover


- Per capita steel consumption in India
- Steel construction -- Advantages
- Pre-engineered buildings
- Space frame construction
- Steel-concrete composite construction
- Steel construction in housing
- Cost competitiveness Some examples
- Indian scenario
- Summary & Conclusions

India 3rd Largest Steel Producer

- Steel demand in India during 2010
 & 2011 @ 13.7%-- World Steel
 Association's Projection
- During 2011, Estimated Steel Consn. in India -- 71.6 MT; 1/8th of China-- 595 MT; 1/18th of World --1309 MT

• Steel Production in India in 2009 was 62.8 MT – 3rd Largest steel producer in the world.

Per Capita Steel Consumption

Larger per capita steel consumption in the advanced countries is mainly due to popularity of steel intensive construction in those countries.

Spectrum of Steel Construction

- Housing & Buildings: Office/
 Residential, Low Rise / High Rise
- Bridges & Flyovers: Rail/ Road,
- Car Parks & Shopping Plazas
- Sports, Medical & Entertainment
- Airports & Seaports
- **Power & Telecommunication**
- Rural Housing
- Crash Barriers, Rigid Pavements

Steel Construction Advantages

- Sleek & Slim—Yet High Performance
- Broad architectural possibilities
- High DUCTILITY-- Excellent shock loading & seismic resistance; minimum loss to life & property & thus compensation to affected citizens—Huge economic burden on the States
- Certified product properties
- Readily available in all forms
- No shrinking and warping

Steel Construction Advantages

- Equal strength in tension & compression
- Enables easy construction scheduling
- Permits large span construction—a modern trend
- Real initial & life cycle cost: Much lower
- Flexibility in design & fabrication: Fast Track Construction
- Easy installation of utilities
- Fully recyclable on replacement Concrete not environment friendly
- Termite and rot resistance

Limitations of RCC & PSC

- Very Weak in Tension
- High Dead Load to Live Load Ratio
- Not Suitable for Cyclic and Shock Loads—as Experienced in Earthquake Situations
- Corrosion of Reinforcements
- Poor Quality: Honeycombing &/or Segregation
- Complex Connections for EQ Design

STEEL is strong in tension, while CONCRETE is strong in compression.

Best way is to take advantage of-composite effect of both steel and concrete Market Share of Steel Construction has been increasing

- In UK, 80-90% single & multi-storey industrial & commercial bldgs—steel framed.
- In Japan— 40% of all buildings are steel intensive.
 In USA > 60% of bldgs – steel framed.

Steel Construction-- Main Types

• Pre-engineered building construction

- Space frame construction
- Steel-concrete composite construction

They significantly reduce time & real initial cost Pre-engineered Light Steel Bldgs.(PEBs)

- Small bldg units are constructed with light steel framing & modular steel framing
- Very popular in Japan, USA, Australia, UK
- Becoming common in India
- Complete design optimization
- Saving in construction time upto 40%;
- Excellent thermal & sound insulation
- **Typical applications** -- domestic houses, hostels, hotels, superstores, petrol & gas stations, warehouses & factory sheds etc.

•**PEBs** are cost effective primarily due to compressed time frame.

• In the UK, a three storey 78-bed Cardiff Holiday Hotel—(involving steel framing, bathroom pods, dry lining the structure and concrete floors)--Could be built in 26 weeks against a requirement of 36 weeks by conventional construction.

• There are many such examples in most of the European countries.

Indian Examples

A saving in cost by 30% and time by 15-20% has been realized by switching over by the oil majors (BPCL, IOCL, HPCL) from traditional RCC construction to modular steel construction for their oil filling station canopy structures

For warehouse superstructure with roof & wall cladding for an area of 5000 m², a saving in time by 33% & in cost by 12% has been reported for the major users such as Container Corporation, IOCL, Exide, Mahindra Ford, Videocon.

Typical PEBs by Kirby & TSE

Large No. of PE Bldgs : Gas Stations; Factories; Power **Plants; Workshops; Bottling Plant; Ware Houses; Rice** Mills; Car parks; Printing **Press; Cold storage; Computer showrooms;** Laboratories

Space Frame Structures

- 3-dimensional structures.
- Made of lightweight hollow circular, rectangular or square sections.
- Provide larger column free spaces /spans.
- Used for construction of roofs of: auditoria; convention halls; passenger stations; indoor and outdoor stadia; exhibition halls; airport terminals; factory buildings; warehouses; temporary and permanent hangers

Typical Indian Examples

- An entertainment center (1100 sqm) with column free space has been built-- as an extension of Hotel Blue Heaven within a time period of one month at a cost of Rs 60 lac against a requirement of 6 months time and Rs 1 crore as the cost.
- Space frame solution had been adopted for the cylinder storage shed (64.4 m x 53.2 m), at an estimated cost of Rs. 1.2 crores against probable cost of Rs.1.8 crores with other RCC option.

Steel-Concrete Composite Construction

Composite construction is a combination of rolled or fabricated steel sections with concrete slab topping using shear connectors

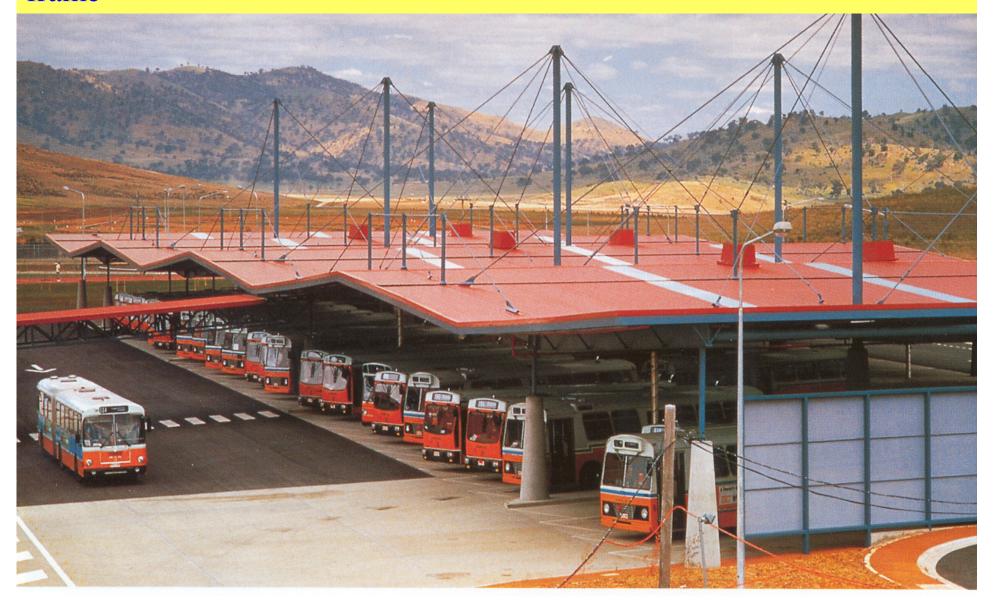
Strength of combined unit is increased—beam sizes are smaller for the same load

Composite action with steel beam and pre-cast slab

Slimflor beam with pre-cast slab

Typical Examples

of Steel Construction



Genesis Multi-storey Car Park, World Cargo Centre, Heathrow

Amsterdam, Netherland : Office Building-Free standing unit; columns a pair of 560 mm steel tubes

Canbera, Australia; Bus Stand; Built-up angle Steel Section **Columns at 7.2m** distance; double articulated roof frame

Hongkong Stadium: Seats : 30,000 Covered + 10,000 Uncovered; Best Architectural Solution : 50 MWide Roofs; 240 M Arch; Fabricated Hollow Sections

HOUSING

SEGMENT

Residential Steel Framed Buildings

USA: 1992—500 houses; 1993— 15,000; 1994—40,000 houses; 1995— 80,000 houses; 1996—**Target:** 250,000 houses

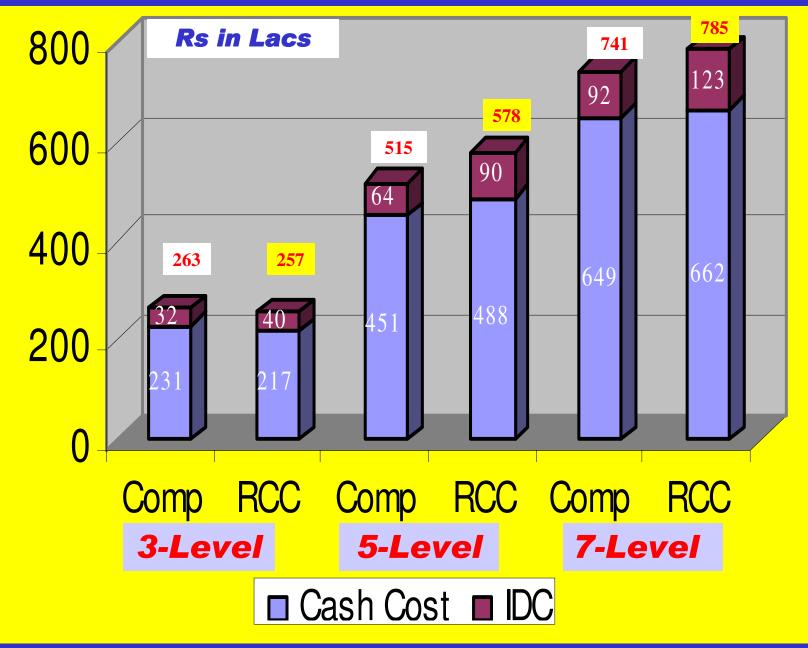
Australia: Pioneer for family houses

Japan: Since 1950—steel framed houses in use; **1993—368,000** steel framed houses

Finland : Apartment Building in Raahe-Self supporting volumetric tower elements; Building frame: Steel hollow sections filled with concrete; Low interest loan to encourge use of steel

Growth in Housing Sector

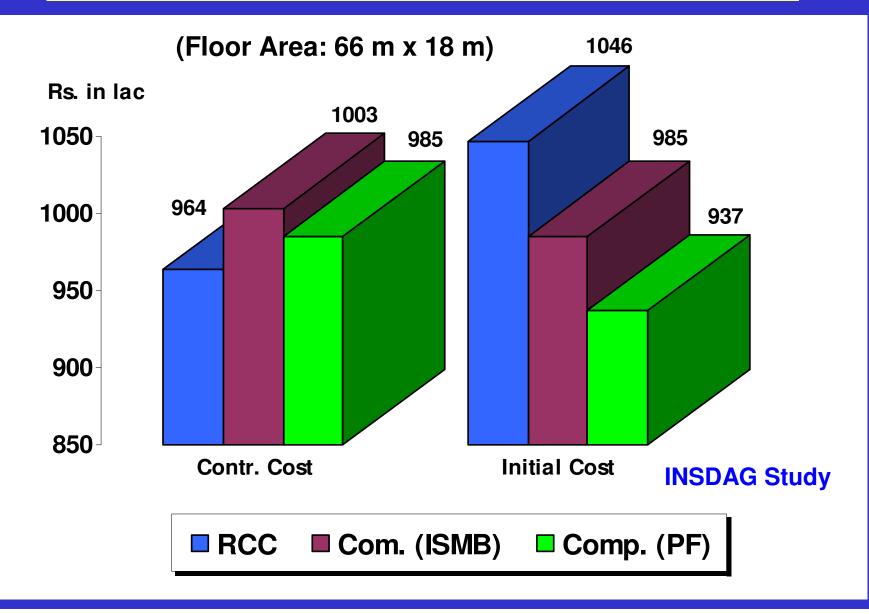
- Expected growth in housing sector = 35% p.a.
- Liberal tax incentives w.e.f. 2000
- Easy availability of Bank loans


Housing is an Important Area in India HUDCO's estimate--3.5

millionlyr (2010-20)

For housing modules with steel columns & beams using sandwich wall & roof panels—Time saving: 30-60%;

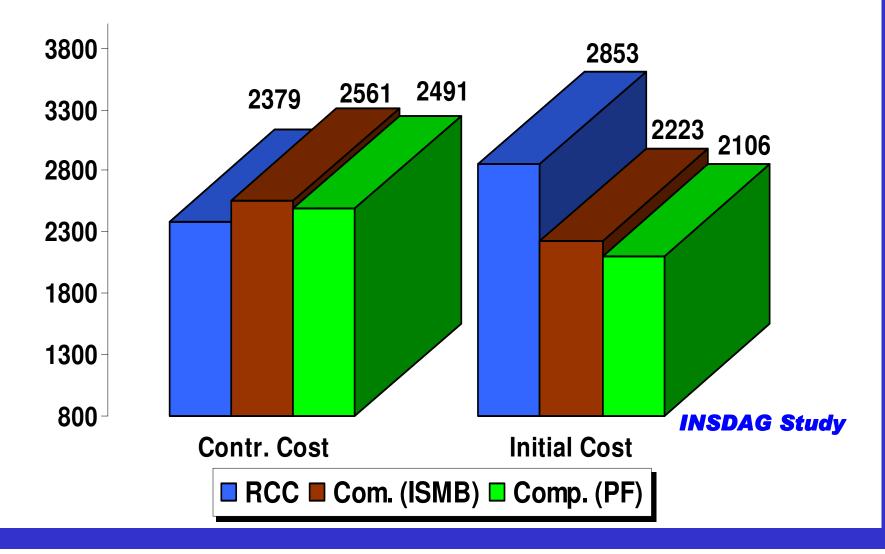
Multi-Level Car Park--Initial Cost



Initial Cost of a	Typical	Urban Flyover
Initial Cost Rs in		Rs in Lacs
	Kolkata	
	RCC/ PSC	Steel-Concrete Composite
Direct Construc-	827	874
tion Cost		(5.7% higher)
Time Cost	69	54
Road User Cost	271	201
Total	1167	1129
		(3.2% less)

Similar outcome for Mumbai

Cost Comparison: RCC vs Composite


Multi-storey building in Kolkata: B+G+3

Cost Comparison: RCC vs Composite

Multi-storey building in Kolkata: B+G+8

Rs in lacs (Floor Area: 66 m x 18 m)

Life Cycle Cost

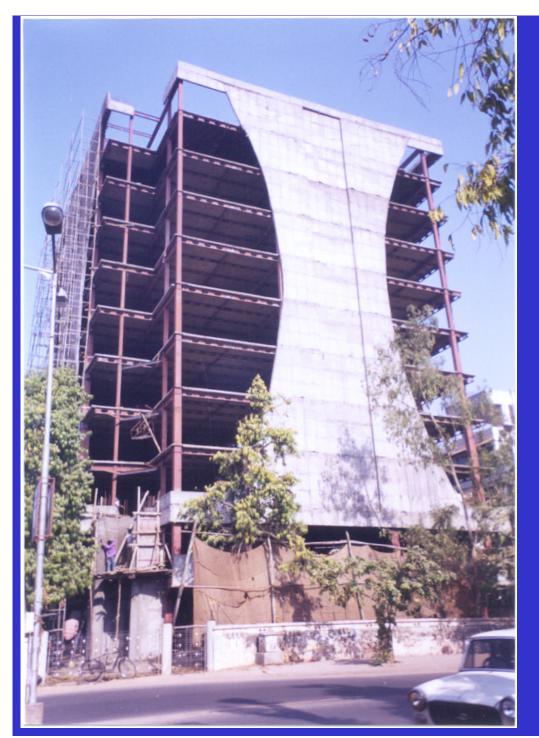
(BMRTS: From Boot Partner's View Point)

Initial Span: 25 m Concrete; 35 m Steel		Rs in Crore
30 km stretch	PSC	Comp.
Direct Cost	440.0	481.0
IDC-Time Cost	92.5	59.0
Diff. Income		(-)167.5
Insp. &	0.9	4.8
Maintenance		
Total	532.6	377.3

Composite (25 m span) Direct Cost: Rs 433 Cr.

Life Cycle Cost

(BMRTS: From **Owners** View Point)


Rs Crore **PSC** Comp. 30 km stretch 481 **Direct Cost** (Revd. Comp.--Rs 433 Cr) **440 IDC-Time Cost (@ 15%) 92 59 Differential Income** (-)167 Maintenance Cost 10 55 132 24 **Major Repair Cost** 12 Social Cost—Public 159 Scrap (15% of Steel Value) (-)41 **Environmental Cost** (-)9 Total **48%** 400 833

Env. Cost: 1 person/km/2daysX365 daysX3 yrsX Rs 5000/-X30 km

Indian

Panorama

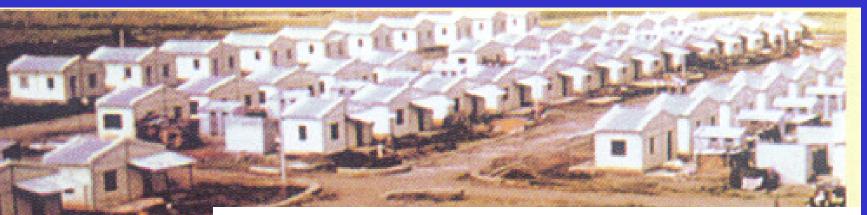
Luv-Kush Bldg Ahemedabad

r Building in Bandra

Architect-- Shakti Parmar; Structural Engr--Niranjan Pandya: Fabricators—Techno Works

Basement—RCC; All 7 Floors—Steel Construction; All Columns, Primary & Secondary Beams— IS:8500 (YS-410 Mpa); Construction Time: June 2001—Feb. 2002; Fire Protection— Automatic Sprinklers

Oswal Overseas Bldg, Gurgaon


Column Grid—10X8.3 m

Typical floor: 3,500 sqm with secondary beams castellated; Metal deck roofing; Entire roof constructed in 30 days.

KTI Building in Noida, Delhi


EQ Resistant PEBs

2000 Pre-fab School Bldgs in Nepal

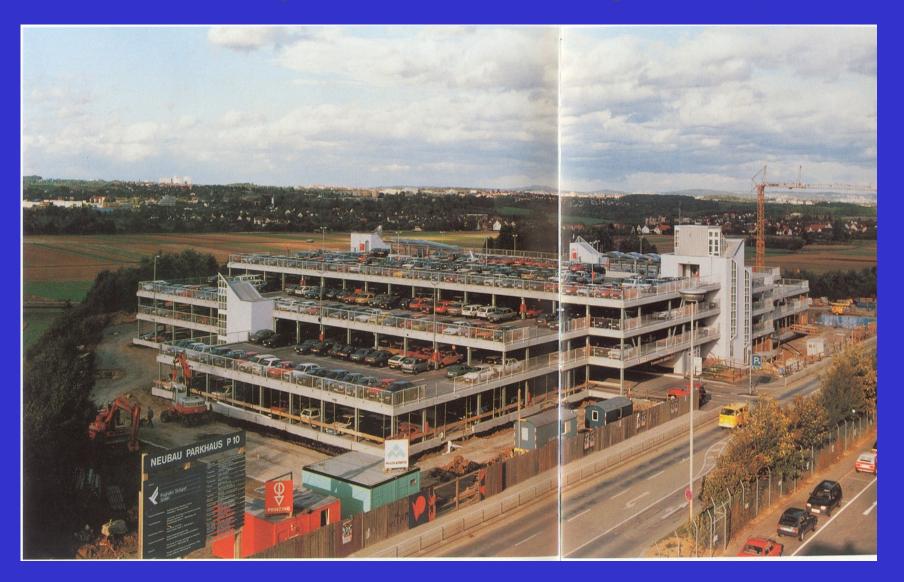
Courtesy: Pennar Industries

Vidyasagar Setu, Kolkata

Fig.2 The second Hooghly cable stayed bridge

Concluding Remarks

- Per capita steel consumption in India is quite low -- mainly due to lower level of steel intensive construction.
- **Steel construction many advantages**
- Steel construction finds extensive application in all segments of industry.
- **PEBs, Space frames and Composite** construction—quite competitive to RCC
- Life cycle cost & real initial cost extensively used in advanced countries for decision making. India should also do.


Limitations of Steel

• For Slender Members--Weak in Compression

• Skill in Fabrication & Joining

• Myths about: Availability; Corrosion; Durability; Life Span etc

Multi-Storey Car Park: Stuttgart Airport

