Advances in Nuclear Fuel Fabrication -An Indian Perspective

R.N. Jayaraj

Chief Executive

Nuclear Fuel Complex

Hyderabad, India

Indian Metal Industry – Shaping the Next Decade, 12-13 February, 2011

Three stage Indian Nuclear Power Program

Status of Indian Nuclear Power Program

Stage - I PHWRs

- 18- Operating
- 4 Under construction
- Several others planned
- **POTENTIAL** \cong 10 GWe

LWRs

- 2 BWRs- Operating
- 2 VVERs- Under construction

Stage – II FBRs

- 40 MWth FBTR- Oper.
 500 MWe PFBR- Under construction
 - POTENTIAL ≅ 350 GWe

Stage - III Thorium Based Reactors

30 kWth KAMINI- Oper.
300 MWe AHWR-Under development
CHTR – Under design.
POWER POTENTIAL ≅ Very Large. Availability of ADS can enable early introduction of Thorium on a large scale.

Nuclear Fuel Cycle

NFC Activities

Process Flow Sheet - PHWR

19 Ele. PHWR Fuel Assembly

- Standardized for 220 MWe PHWR's
- Fully Resistance Welded.
- ✤ 328 welds per Assembly.
- Generates 7 Lakh Electrical units per Assembly.
- Contain 15.2 Kg of UO₂ Material.
 Contain 21.5 kg of UO₂ Material.

37 Ele. PHWR Fuel Assembly

- Standardized for 540/700 MWe PHWR's
- Fully Resistance Welded.
- ✤ 622 welds per Assembly.
- Produces 11 Lakh Electrical units per Assembly.

Fuel Assemblies with RU, ThO2, MOX were fabricated and irradiated

Types of PHWR Bundles Manufactured at NFC

- > 19-element wire-wrap Bundle
- > 19-element split spacer Bundle
- > 22-element split spacer Bundle
- > 37-element split spacer Bundle
- > 19-element Thoria Bundles
- > 19-element RU Bundles
- > 37-element RU Bundles
- > 19-element SEU Bundles

Cumulative Production of PHWR Fuel Bundles at NFC

Unit-Location	Reactor Type	Present Capacity (MWe)	Date of commencing Commercial Operation
TAPS-1, Tarapur, Maharashtra	BWR	160	October 28, 1969
TAPS-2, Tarapur, Maharashtra	BWR	160	October 28, 1969
RAPS-1, Rawabhata, Rajasthan	PHWR	100	December 16, 1973
RAPS-2, Rawabhata, Rajasthan	PHWR	200	April 1, 1981
RAPS-3, Rawabhata, Rajasthan	PHWR	220	June 1, 2000
RAPS-4, Rawabhata, Rajasthan	PHWR	220	December 23, 2000
RAPS-5, Rawabhata, Rajasthan	PHWR	220	February 4, 2010
RAPS-6, Rawabhata, Rajasthan	PHWR	220	March 31, 2010
MAPS-1, Kalpakkam, Tamilnadu	PHWR	220	January 27, 1984
MAPS-2, Kalpakkam, Tamilnadu	PHWR	220	March 21, 1986
NAPS-1, Narora, Uttar Pradesh	PHWR	220	January 1, 1991
NAPS-2. Narora, Uttar Pradesh	PHWR	220	July 1, 1992
CAPS-1. Kakrapar, Gujarat	PHWR	220	May 6, 1993
CAPS-2, Kakrapar, Gujarat	PHWR	220	September 1, 1995
AIGA-1. Kaiga, Karnataka	PHWR	220	November 16, 2000
CAICA-2 Kajga Karpataka	PHWR	220	March 16, 2000
AICA-3 Kajaa Karpataka	PHWR	220	April 16, 2007
AICA / Kaiga Karnataka	PHWR	220	January 19, 2011
ADS 3 Tananun Mahamahtma	PHWR	540	August 18, 2006
TAPS-5, Tarapur, Manarashtra	PHWR	540	September 12, 2005

Reactors in operation and under Construction in India

Reactors under Construction

Kudankulam Nuclear PowerLWR2x1000Project, Units 1&2(VVER)

PFBR, Kalpakkam

FBR

500

Nuclear Power Generation - Future Programmes

To be fuelled through indigenous sources

- 10 PHWRs of 700 MWe
- 4 FBRs of 500 MWe
- 1 AHWR of 300 MWe

To be fuelled through imports

- LWRs, 40,000 MWe equivalent
- 10 PHWRs of 700 MWe

PHWR Fuel Fabrication Activities in India - Envisaged

BWR Fuel Assembly for Tarapur Atomic Power Stations-1&2

- Improvements:
 - Fully annealed thick wall fuel sheath.
 - Short and Chamfered Pellets
 - Pre-Pressurization of Fuel Element

Fast Reactors - Powering the Future

Fast Breeder Test Reactor at Kalpakkam (40MW(th)) is the test bed for development of fuel, blanket and structural materials for FBRs
FBTR achieved criticality in 1985 with unique Pu rich mixed carbide fuel developed by

BARC.

The peak burn-up achieved on MK I is 165 GWD/T.

FBTR Core cross section & Material

Components for FBTR Subassemblies

19

OHT to Foot & Head Portion Welding (GTAW)

Bottom Plug Welding (GTAW)

Welding Techniques Used for FBTR Subassembly Fabrication

Top Plug Welding (GTAW)

Fabrication of Core Sub-Assemblies for Fast Breeder Test Reactor (FBTR)

End Plug Welding Machine for Radial Blanket Pin

Wire-Wrap Machine for Radial Blanket Pin

PFBR Core Cross-Section

Symbol	TYPE OF SUBASSEMBLY	Nos.
	FUEL (INNER)	85
Ó	FUEL (OUTER)	96
Ó	CONTROL & SAFETY ROD	9
Ó	DIVERSE SAFETY ROD	3
ň	BLANKET	120
Ó	STEEL REFLECTOR	138
Ó	B4C SHIELDING (INNER)	125
	STORAGE LOCATION	156
Ò	STEEL SHIELDING	609
Ó	B4C SHIELDING (OUTER)	417
	TOTAL SUBASSEMBLIES	1758

01	Main Vessel
02	Core Support Structure
03	Core Catcher
04	Grid Plate
05	Core
06	Inner Vessel
07	Roof Slab
08	Large Rotating Plug
09	Small Rotating Plug
10	Control Plug
11	CSRDM / DSRDM
12	Transfer Arm
13	Intermediate Heat Exchanger
14	Primary Sodium Pump
15	Safety Vessel
16	Reactor Vault

Materials for PFBR Subassemblies

Material & Compositions

- D9 for Clad Tubes: Cr: 13.5-14.5, Ni: 14.5-15.5, Mo: 2, Ti: 5C-7.5C, N: 50 ppm, Inclusion Rating: 1
- D9 for Hexcan Tubes: Cr: 13.5-14.5, Ni: 14.5-15.5, Mo: 2, Ti: 5C-7.5C, N: 100 ppm, Inclusion Rating: 4
- D9 for Spacer Wire: Cr: 13.5-14.5, Ni: 14.5-15.5, Mo: 2, Ti: 5C-7.5C, N: 50 ppm, Inclusion Rating: 1
- **316LN for Bulk Components:** C: 0.02-0.03, N: 0.06-0.08
- Spring Wire: ASTM A-286

PFBR Subassemblies Fabricated

Manufacture of Core Sub-Assemblies for FBRs

Automatic Hexcan Welding Machine

- Both conventional and orbital techniques with GTAW cum Plasma were applied successfully for hexcan peripheral welding with filler addition.
- Automatic torch inclination with Torch oscillation axis provided for keeping it perpendicular to welding face in synchronization with tube rotation.
- Software based automatic control with feedback system for all critical parameters with recording facilities.
- Arc Distance Control

Bottom Plug Welding Machine

Top Plug Welding Machine

Wire Wrapping & Spot Welding Machine

Crimping Machine

New Fabrication Line of AFFF

WELDING OF FUEL PIN

PFBR FUEL PELLETS

Automatic Pin Assembling Machine

- 1. Pin Magazine (127 Pins)
- 2. Foot Assembly
- 3. Hexcan assembled with Top Assembly
- 4. Shielding
- 5. Input Trolley
- 6. Material Transfer Robot

- 7. Pin Assembling Robot
- 8. Pin Pushers
- 9. Special Grippers for Pin
- 10. Assembly Stn./Fixture
- 11. Lower Part Holding Stn.
- 12. Welding/Bead Grinding Robot
- 13. Finished Subasembly

Specifications of Zr-based Materials

Element	ZrO,	Zr-sponge	Zr-2	Zr-4
AI	50	75	75	75
В	0.1	0.5	0.5	0.5
С	-	250	270	270
Ca	50	30	30	30
Cd	0.3	0.5	0.5	0.5
CI	-	1300	20	20
Со	15	20	20	20
Cr	100	200	500-1500	700-1300
Cu	50	50	50	50
Fe	150	1500	700-2000	1800-2400
Н	-	25	25	25
Hf	100	100	200	200
Mg	50	600	20	20
Mn	50	50	50	50
Мо	50	50	50	50
N	-	65	65	65
Na	50	50	-	-
Nb	-	-	100	100
Ni	20	70	300-800	70
0	-	1400	1000-1400	1000-1400
Р	-	100	-	-
Pb	20	100	130	130
Rare earths	15	15	-	-
Si	-	120	20	120
Sn	-	-	1.2%-1.7%	1.2%-1.7%
Та	-	-	200	200
Ti	50	50	50	50
U	3.5	3.5	3.5	3.5
V	-	50	50	50
W	-	50	50	50
Zn	-	100	-	-
Fe+Cr+Ni	-	-	0.18%-038%	0.28%-0.37%

33

Specifications of Nat. U Powder and Pellets

Element	NU-powder	Nu-pellet
Ag	1	1
AI	25	50
В	0.3	0.3
С	200	200
Ca	50	50
Cd	0.2	0.2
Cr	15	25
Cu	10	20
Dy.	0.15	0.15
F	10	10
Fe	50	100
Gd	0.1	0.1
н	-	1
Mg	10	50
Mn	5	10
Мо	2	4
Ni	20	30
Si	30	60

Quality Control at Analytical Laboratory

Inductively Coupled Plasma – Atomic Emission Spectrometer (Model: Ultima 2 CHR)

Ultrasonic Testing

- Technique: Immersion Longitudinal and Transverse
- Standard: ASME sec III Class I: 5% WT
- Wall thickness: 100% surface coverage
- Handling system: Automated loading and unloading with *extended tube transport* with segregation of defective tubes

Automated Ultrasonic Testing Unit

23 m long 9Cr-1Mo tubes under testing

Eddy Current Testing

- Technique: Saturation Field Eddy Current Testing (magnetic materials) with OD encircling differential coil
- Demagnetization: using AC coil immediately after test (Residual Magnetism < 0.1 gauss)
- Tube handling: Automated loading and unloading with segregation of defectives for 23.1 m length

Automated Eddy Current Testing Unit

Indigenous Capability to Manufacture Process Equipment

"If an item of equipment is imported from abroad, all one gets is a particular instrument. But if one builds it oneself, an all important lesson in expertise is learnt as well."

Dr. Homi J. Bhabha

Robotic End Plate Welding Machine

- ✓ Conceptualized, procured and successfully qualified for production of 19 and 37 element PHWR fuel bundles
- ✓ Robot integrated welding stations with other work stations.
- \checkmark The productivity has increased by 50%
- ✓ Provision for integrating another end plate welding machine

Integrated Spacer and Bearing Pad Welding Equipment

- Tube handling system
- Pick & place system for appendages
- Internal support system for tube
- Multiple weld heads
- Control system
- Suitable for all element types
- Monitoring of critical parameters
- Detection of appendage positioning
- Dynamic weld schedules
- Data Acquisition System

Automatic Fuel Bundle Inspection Loop

- ✓ Conveying Systems
- ✓ SCADA Controlled
- ✓ Five Axis Robot
- ✓ Bundle number identification
- ✓ Weight measurement
- ✓ Dimension Inspection
- ✓ Back Filling and re-circulation of Helium and Argon mixture
- ✓ Helium Leak Testing
- ✓ Productivity up by 50%

Indigenously Manufactured Equipment

Cold Tube Reducing Mill for Zircaloy Fuel Tubes

Vacuum Baking Oven

Horizontal Vacuum Annealing Furnace for Zirconium Alloy Products

Fuel for LWRs

- 34 LWRs/PWRs will be imported for generating 40 GWe.
- Fuel fabrication facilities to be set-up with the collaboration of foreign fuel manufacturers.

- supply of enriched fuel, UF₆/pellets by foreign fuel manufacturers

- manufacture of zircaloy components in India.

Advanced Fuel Rods for VVER-1000 FA

Parameter	Actual dimension	New dimension
Cladding thickness, mm	0.65	0.57
Pellet diameter, mm	7.57 / 7.60	7.80
Central hole, mm	1.4 / 1.2	0
Average grain size, µm	10	25

Features that provide fuel rod's service lifetime:

- use of zirconium sponge (since 2009)
- fuel pellets with specified structure
- E110 alloy with optimized chemistry

L=3530 +150 mm

=3530 ,+200 mm

Source : TVEL Business Partners Meet, June 9-10, 2010, Moscow, Russia

Schematic showing Electron Beam welded tube joint made prior to pilgering

> Tube Section showing Outer & Inner Walls of T91 & Zr Alloy

Enlarged View showing no gap at T91-Zr Interface along with wall thickness measurement

Advanced Heavy Water Reactor

AHWR is a vertical pressure tube type, boiling light water cooled and heavy water moderated reactor using 233U-Th MOX and Pu-Th MOX fuel.

Major Design Objectives

- Power output 300 MWe with 500 m₃/d of desalinated water.
- A large fraction (65%) of power from thorium.
- Extensive deployment of passive safety features – 3 days grace period, and no need for planning off-site emergency measures.
- Design life of 100 years.
- Easily replaceable coolant channels.

AHWR Fuel

- 54 fuel rods arranged in three concentric pitch circles.
- **\Rightarrow** Twenty four (Th + Pu) O₂ fuel rods.
- ***** Thirty (Th + U^{233}) O₂ fuel rods.
- Hollow cylindrical ZrO₂ displacer rod.
- Emergency core cooling water is injected into the cluster through the holes in this displacer rod.

Main features of AHWR fuel cluster

(Th-Pu) MOX (Th-²³³U) MOX **Fuel pins Central Tube**

Fuel Cluster Cross-Section

Main Features

- Thorium bearing fuel [(Th + Pu)O2 MOX, (Th + • 233U)O2 MOX]; Enrichment 2.5% (top half) & 4% (bottom half) in the former
- Central (ZrO2-Dy2O3) displacer rod ٠
- Emergency core cooling water injected into the cluster through the holes in displacer rod
- Low pressure drop design

Fuel & Core Sub-assembly activities - a Vision

Concluding Remarks

- For achieving an impressive growth rate in Indian GDP, it is essential to multiply power generation.
- India to have best utilization of Thorium through 3-stage Nuclear Power Programme (NPP).
- India is matured in closed fuel cycle technologies in the first stage of NPP.
- India to multiply nuclear power generation through LWRs and FBRs.
- Nuclear Fuel Complex (NFC), having mastered PHWR & BWR Fuel manufacturing technologies, all set to enter fuel manufacturing for LWRs.
- Several advanced fuel fabrication technologies, including state-of-the-art automation systems, have been developed indigenously.

Thank You

Nuclear Fuel Elements/Assemblies

19-element bundle for PHWR 220

37-element bundle for PHWR 540/700

6x6 element assembly for BWR 160 56

